Stability in Model Populations

LAURENCE D, MUELLER
AND AMITARH JOSHI




Stability in Model Populations

Laurence D. Mueller and Amitabh Joshil]

Department of Ecology & Evolutionary Biology
University of California, Irvine
Irvine, California 92697 USA
and
Evolutionary Biology Laboratory
Evolutionary and Organismal Biology Unit
Jawaharlal Nehru Centre for Advanced Scientific Research

Jakkur P. O., Bangalore 560 064, India

|:| All rights reserved



Stability in Model Populations L.D. Mueller & A. Joshi

Table of Contents

Chapter 1 — INTRODUCTION

Historical Development of the Concept of Population Stability 1-5
What is Stability? 1-7
Stability in Metapopulations 1-9
Why Are we Interested in Stability? 1-15
Population Extinction 1-15
Effective Population Size 1-16
Fitness in Age-Structured Populations 1-17
Why do Laboratory Studies? 1-18
Laboratory Studies of Population Biology 1-20
Starting Populations 1-20
Lab Adaptation 1-22
Replicate Populations 1-22
Measuring Genetic Differences 1-25
Evaluating Models in Population Biology 1-25
General »s. Species-Specific Models 1-27

Chapter 2 - THEORY OF POPULATION STABILITY
First Order Non-Linear Difference and Differential Equations 2-2

Stability of First Order Non-Linear Difference and Differential Equations 2-7

Population Cycles and Chaos 2-13
Cycles 2-13
Chaos 2-16

Second and Higher Order Models 2-20



Stability in Model Populations L.D. Mueller & A. Joshi

Age-Structure 2-21
Pre-Adult Density Affects Adults Reproduction 2-28
Evolution of Population Stability 2-32

Chapter 3 - TECHNIQUES FOR ASSESSING POPULATION STABILITY

Linearized Population Dynamics in the Vicinity of an Equilibrium 3-1
Model Based Estimates of Stability 3-7
Models Chosen a-priori 3-8
Models Estimated from Data 3-14
Time Series Analysis 3-20
Chaos 3-26
Time Series 3-27
Detecting Chaos 3-29
Appendix 3-33

Chapter 4 —- BLOWFLIES

Life-History of L. cuprina in the Laboratory 4-1
Dynamics of L. ecuprina Populations 4-6
Modeling the Dynamics of L. cuprina Populations 4-17

Chapter 5 — TRIBOLIUM

Life-History of Trzbolium in the Laboratory 5-2
Pre-adult stages 5-3
Adult stage 5-9

A model of Tribolium Population Dynamics 5-14
A model of egg-to-larva dynamics 5-15

The larva-pupa-adult (LPA) model 5-21



Stability in Model Populations L.D. Mueller & A. Joshi

Empirical evaluation of the LPA model 5-28

Chapter 6 - DROSOPHILA

Life-History of Drosophila in the Laboratory 6-2
Larvae 6-2
Adults 6-7
A Model of Population Dynamics 6-10
Stability of Large Laboratory Populations 6-19
Stability of Small Laboratory Populations 6-22
Assessment of the Drosophila model 6-33
Stability in Laboratory Metapopulations 6-34
Age-Structured Populations 06-45
Evolution of Population Dynamics 6-49
Inbreeding Increases the Risk of Population Extinction 6-53
Evolution of Population Stability 6-57

Chapter 7 - NATURAL POPULATIONS

Simple Models 7-1
Surveys Utilizing RSM Techniques 7-3
Detailed Studies of Single Populatio ns 7-7
Soay Sheep and Red Deer 7-7
Perennial Grass, Agrostis scabra 7-9
Lemmings and Voles 7-10
Why is Chaos Rare in Natural Populations? 7-14

Chapter 8 — CONCLUSIONS

A Heuristic Framework for Viewing Population Dynamics an d Stability 8-1



Stability in Model Populations L.D. Mueller & A. Joshi

L. cuprina, Tribolinm, and Drosophila Compared 8-11

REFERENCES



Stability in Model Populations Introduction

CHAPTER ONE

Introduction

Interest in understanding the growth of biological populations goes back at least a couple
of centuries, long before either the coining of the word 6kologie by Haeckel in 1866 to
denote the study of the relationship of the organism and its environment, or the
crystallization of population ecology as a distinct discipline in the 1920s and 30s. Both
Linnaeus and Malthus recognized that the very nature of reproduction implied geometrical
increase in population size, and that such an increase obviously was not taking place
unchecked for most, if not all, biological populations. Darwin, in his 1859 book, Origin of
Species, drew upon this idea of the potentially limitless power of increase of populations to
emphasize that there existed in the natural world a constant struggle for existence which, in
turn, formed the framework within which natural selection could act upon heritable
differences that happened to enable some individuals to face the vagaries of this struggle
better than others.

Two major issues arose directly from this Darwinian view of nature, and the domain of
ecology has largely been related to seeking the resolution of these two issues. The first issue
was to understand exactly how the biotic and abiotic environment of a species interact to
produce the struggle for existence. The development of physiological ecology in the early
part of this century was a direct attempt to empirically study the mechanics of how
organisms were able to withstand the rigors of existence in an often hostile world. The
second issue, the resolution of which forms the domain of population ecology, and with
which we shall primarily concern ourselves in this book, was the question of how order in
nature was maintained in the face of the seemingly complex and disorderly struggle for

existence. Clearly, the notion of stability, in the general sense of the maintenance of some
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sort of orderly spatial and temporal distribution of living organisms, is implicit in this
question. Indeed, as early as 1866, Herbert Spencer, in his book, The Principles of Biology,
argued that the long term persistence of populations or species implied that forces
contributing to mortality were in equilibrium with forces contributing to the preservation of
life and to reproduction. He also argued that similar adjustments must also exist at the
individual level between the organisms ability to sustain its life and its ability to reproduce,
thus foreshadowing by many decades the basic tenets of both population ecology and life-
history evolution.

These ideas of Spencer’s greatly influenced the development of ecology in the last years
of the 19th century, shaping the view that nature existed in a balance that was for the
common good, and that the primary job of the ecologists was to understand the precise
system of checks and balances, through agencies such as competition and predation, that
maintained the harmony of nature. More importantly, several of the major questions that
have been the subject of the principal debates in population ecology through the 20th
century can be seen to arise quite naturally from Spencer’s views on the balance of nature.
One of the first questions that arises in this context is how exactly does one define the
balance of nature, and, having defined it, how does one empirically determine whether any
given population is at this balance or not? Debate on this issue is still continuing, although
we have come a long way over the years in clarifying what exactly we mean by notions of
population regulation and equilibria (reviewed in Turchin, 1995a). The obvious next issue,
once one is decided upon what is meant by stability, is to understand the proximal causes of
stability in biological populations. Such studies into how exactly populations are regulated in
order to maintain them at an equilibrium, and what the relative role of biotic and abiotic

factors is in population regulation, has also been the subject of intense debate in population
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ecology, especially during the 1930s through 50s. Here, too, our understanding has
progressed over the decades, with an increasing emphasis now being placed on elucidating
the impact of details of the life-history of specific organisms, as well the spatial structuring of
populations, on the dynamics and stability of populations. And finally, there is the issue of
the ultimate causes, if any, for the stability of populations, an issue that explicitly brings
evolution into the picture. The focus here is to try and understand how the dynamic
behaviour and stability characteristics of populations may themselves evolve, perhaps
directly by group selection, or indirectly, as a by-product of evolutionary changes in life-
history characters that are the primary focus of natural selection acting at the level of the
individual.

We will concern ourselves in this book with all three of the major questions outlined
above, dealing with conceptual issues as well as empirical approaches to addressing these
questions that we feel may be especially helpful in enhancing our understanding of
population stability and its proximal and ultimate causes. One of our primary concerns is to
highlight the potentially important role of empirical studies on model systems of laboratory
populations in addressing questions regarding both the proximal and ultimate causes of
population stability. Indeed, this will be our major focus in the rest of the book. No doubt,
only studies on natural populations can address the issue of whether or not populations in
the real world tend to show stable dynamic behavior. In order to evaluate the various
hypotheses regarding the proximal and ultimate determinants of population dynamics and
stability, however, we need to work with systems of replicated populations wherein the
degree of environmental complexity and variability can be rigorously controlled and
simplified. This is typically possible only with laboratory systems whose basic biology and

laboratory ecology is relatively well understood. Indeed, some of the earliest experimental
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work in population ecology in the 1920s and 30s was done on laboratory populations of
insects (Pearl, 1927, 1928; Chapman and Baird, 1934) and protozoans (Gause, 1934).
Thereafter, experimental work on laboratory systems became a little less common, especially
from the 1960s on, as the emphasis shifted to studies on natural populations, partly because
of the ongoing debates over whether natural populations were density-regulated, and
whether interspecific competition was the primary force shaping the structure of biological
communities. This is essentially the situation at the current time as well, with the bulk of
research in population ecology involving either theoretical modeling, or the study of natural
populations. Both these aspects of population ecology have been the subject of numerous
recent books (e.g. Rhodes et al., 1996) and reviews, and we shall, therefore, devote much less
attention to discussing them.

Since a discussion of what exactly is meant by stability, and how one can empirically assess
the stability characteristics of a population, is a necessary prerequisite to dealing with the
causes, both proximal and ultimate, of stability in biological populations, we will first take up
the theory of population stability in Chapter 2 and discuss the derivation of stability
properties for a range of population growth models, including both extremely simple
heuristic models and more complex ones that take into account various meaningful aspects
of the biology of specific systems. In Chapter 3 we will compare several commonly used
techniques of assessing population stability, and discuss their respective strengths and
weaknesses. The use of some of these techniques to assess the stability of natural
populations will be briefly reviewed in Chapter 7, thus addressing the issue of whether
populations in nature tend to exhibit stability. Chapters 4 through 6 will focus in some detail
on three model systems that have been the subject of fairly extensive empirical investigations
in population ecology: the blowfly Lucilia cuprina, flour beetles of the genus Tribolium, and the
truittly Drosophila melanogaster. Our goal here is not only to review the results obtained from
studies on these model systems, but also to make comparisons across systems in order to see
if the diverse results can be explained in the context of some common theoretical

framework. We also hope that a detailed examination of these systems will serve to highlight
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some of the advantages of using model laboratory systems to address the question of
proximal and ultimate causes of population stability. Indeed, laboratory populations
constitute a powerful system in which environmental factors can be varied, one or a few at a
time, and the consequences of such manipulations on population dynamics observed with a
high degree of rigor. Moreover, laboratory populations of species such as Drosophila also
hold great promise for investigations on the interface of population ecology and population
genetics Thus, in the concluding chapter, we will attempt to put the findings from the three
model systems into perspective, as well as outline what we feel are some of the more
interesting unanswered questions in this field. We will also discuss ways in which these
questions may be addressed in the future by viewing them in the light of a general heuristic
framework for understanding the dynamics of stage-structured populations. In this
framework, the population dynamic consequences of density-dependence of different life-
history stages and fitness components will be seen to depend critically on the relationship
between the life-stage that is directly controlled by density-dependence and the life-stage that
is the focus of density-dependent regulation of recruitment into either the adult or the
juvenile stages.

As a prelude to dealing with the theory of population stability and its applications in the
next three chapters, we will now outline, in the remainder of this chapter, the historical
development of ideas regarding stability in population ecology. We will also discuss the
various ways in which stability is defined and studied in different contexts.

HISTORICAL DEVELOPMENT OF THE CONCEPT OF POPULATION STABILITY

As we have seen, the notion of population stability as a balance between mortality and
reproduction goes back well over a century. Indeed, population regulation has been the
focus of major debates and discussions in population ecology practically since its inception
as a distinct discipline in the early part of this century. Much of the early arguments about
population regulation focused on whether population numbers were controlled primarily by
biotic (Howard and Fiske, 1911) or climatic (Uvarov, 1931) factors. In the former case there

was no clear notion of intrinsic density-dependent population regulation by negative

L.D. Mueller & A. Joshi 1-5



Stability in Model Populations Introduction

feedback, as much of this discussion on biotic factors actually involved predators such as
birds that did not impact the prey insect populations in a density-dependent manner.
Nicholson (1933) first made the point that “for the production of balance, it is essential that
a controlling factor should act more severely against an average individual when the density
of animals is high, and less severely when the density is low”, thus clearly enunciating the
idea of density-dependent regulation of populations. Moreover, Nicholson (1933, 1954b)
also made a clear distinction between “responsive” factors (those affected by population
density) and “non-responsive” factors, such as climate or other aspects of the physical
environment that do not result in regulation of population density, although they may greatly
influence the level at which the regulatory mechanisms become operative and, thus, may
determine the equilibrium size of the regulated population. Among the responsive factors,
too, he differentiated between reactive and non-reactive factors, pointing out that in order to
play a role in regulation, a factor must not only be influenced by population density but must
also exert a negative feedback upon population density.

Not all ecologists, however, immediately accepted Nicholson’s arguments for the
primacy of density-dependent factors in population regulation. Andrewartha and Birch
(1954) and Den Boer (1968) separately argued that invoking density-dependent factors was
not necessary to explain the regulation of populations, especially the prevention of
outbreaks, and that density-independent factors alone could explain the apparent stability of
natural populations. Milne (1958), Dempster (1983) and Strong (1986) separately developed
the idea of imperfect density dependence, or density vagueness, which essentially said not
much more than that populations may be only strongly density regulated at fairly high
densities, whereas for a large range of intermediate densities population size may fluctuate in

a random manner. By and large, however, the consensus of opinion now appears to be that
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density-dependence is a necessary prerequisite for population regulation, and the focus of
present study has, therefore, shifted to more detailed analyses of how the life-history and
ecology of different organisms interact to produce specific patterns of density-dependence
of different fitness components, and how these patterns of density-dependence affect the
dynamic behavior of populations (Cappucino and Price, 1995).

WHAT IS STABILITY?

Our frame of reference in this book will be on the analysis of single populations. In a
deterministic environment the dynamics of a biological population may be described by a
difference or differential equation. When these equations admit an equilibrium point, it is
considered to be stable if perturbations away from this equilibrium result in the system
returning to the equilibrium point (Lewontin, 1969). In the next chapter we will describe in
more detail the idea of local stability. As the name implies the conclusions are only valid in a
small region around the equilibrium point. For some models it is possible to establish
whether an equilibrium is globally stable, implying that the system will converge to the
equilibrium point from any feasible starting point. Global stability means that from any
feasible starting point the system will converge to the equilibrium point. Establishing global
stability for experimental systems is typically much more difficult than examining local
stability. Consequently, we focus almost entirely on local stability analyses. Any discussion of
stability is premised on the assumption that the appropriate time scale and spatial limits of a
population are known (Connell and Sousa, 1983). This is usually not a problem for
laboratory populations in which the appropriate time and spatial scales are usually known.
For natural populations, however, it is often difficult to unequivocally establish the

appropriate time scale and spatial limits.
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In any habitat, there is almost always some degree of random wvariation in the
environment that affects the number of organisms present in a particular population. Thus,
probably no natural or laboratory population exists in a completely deterministic
environment. We expect that random or stochastic variation is a more prominent
component of the dynamics of natural populations than laboratory populations, and that is
one strong reason for bringing populations into the laboratory for experimentation. In fact
one reason for bringing populations into the laboratory is to reduce the level of stochastic
variation.

The meaning of stability in a stochastic environment is not as clear cut as in deterministic
environments. Turelli (1978) reviews several criteria that might serve as useful measures of
stability in random environments. (1) Does the stochastic process describing population
dynamics possess a stationary distribution? The answer to this question might be yes if
certain conditions are satisfied. A stationary distribution is a probabilistic description of the
possible sizes a population may assume. It is "stationary" because it applies regardless of the
starting point: no matter what state the population starts out in, the system is expected to
converge to this distribution. In this sense the concept of a stationary distribution is more
like the concept of global stability. (2) A stochastic population may also be considered
“stable” if the fluctuations about its equilibrium are not too severe. This would mean the
variance or coefficient of variation would need to be less than some bound. This concept is
more akin to the traditional concept of local stability mentioned previously and it would
provide a numerical estimate of stability (in the form of the coefficient of variation). Royama
(1977, 1991) calls populations with bounded variance and no trend in population size,
“persistent populations”. (3) The expected time to extinction or mean persistence time could

also be used as a measure of stability (Ludwig, 1975, 1976). This is also a very practical
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property, since there is now great interest in managing endangered populations and assessing
the various factors that may lead to extinction.

Extinction times due to demographic variation were studied by MacArthur and Wilson
(1967). Their analysis showed that extinction times increase rapidly with increasing carrying
capacity. However, an important component of population viability is the frequency of
catastrophes that reduce population size (Mangel and Tier, 1993). It is reasonable these types
of rare events, while important, will be related to aspects of the environment rather than the
biological properties of density regulation. In this book our focus will be the biological
phenomenon that determine population stability rather than the random aspects of the
environment.

Most of the analyses of model populations in this book will focus on the stability of the
deterministic processes that affect population stability. For some populations, especially in
nature, the actual dynamics may be quite different than the predictions from the
deterministic models. In chapter 3 we will discuss in more detail the relative merits of
stochastic and deterministic evaluations of stability.

Another type of model stability is sometimes called structural stability. If model
assumptions or parameters are changed slightly and the model displays qualitatively new
behavior then the model is structurally unstable. For instance the neutrally stable cycles
predicted by the Lotka-Volterra predator-prey models disappear if the prey grow is assumed
to be density-dependent or if the predator exhibits satiation. Thus, the exploration of a
model’s robustness may also reveal it’s structural stability. We will occasionally do this by
examining the predictions of several different models. While the examination of structural
stability of models is not common in population biology there are some good examples of

this in the literature (Gilpin, 1975, chapter 7).

L.D. Mueller & A. Joshi 1-9



Stability in Model Populations Introduction

STABILITY IN METAPOPULATIONS

A major contributor to the high profile of population dynamics studies in ecology in
recent years has been the renewed interest in understanding the dynamics of systems of
small to moderate sized populations that are linked by migration (metapopulations), as it is
becoming clear that a metapopulation view may be of tremendous importance for
conservation (Harrison, 1994), biological control (Van der Meijden and van Wijk, 1997) and
epidemiology (Earn ez al., 1998), in addition to providing insights into how natural diversity
is structured. Earlier in this century, Sewall Wright (1931, 1940) had pointed out that that
evolution could proceed very rapidly in spatially structured populations, especially if the sub-
structuring was accompanied by relatively frequent extinction of local populations and the
recolonization of the vacant patches by individuals from neighboring sub-populations.
Population ecology, for the most part however, remained focused primarily on single
populations, although some workers did emphasize the importance of considering spatial
structure and local extinction (Andrewartha and Birch, 1954; Huffaker, 1958; Gadgil, 1971).
In the early theoretical studies on metapopulation dynamics, the emphasis was on the system
as a “population of populations” and, hence, the primary focus of these studies was on
population turnover and the attainment of a steady state in which some constant proportion
of suitable habitat patches was occupied by local populations at any given point in time; the

actual proportion occupied depended on the balance between extinction and colonization
rates (Levins, 1969, 1970), yielding P=1- e/ M, where P is the equilibrium proportion of
occupied patches and ¢ and 7 are extinction and colonization rates, respectively. Implicit in

the classical view of metapopulation dynamics was the assumption that local dynamics

involve a timescale much smaller than that of the dynamics of extinction and colonization,
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such that all patches are either empty or fully occupied, and migration does not affect local
dynamics (Hanski and Gyllenberg, 1993).

With an increasing realization that incorporating migration into simple population
models can have fairly significant effects on local dynamics (McCallum, 1992; Hastings,
1993; Hastings and Higgins, 1994; Sinha and Parthasarathy, 1994, 1996), a somewhat more
elaborate view of metapopulation stability at both the global (z.e. metapopulation) and local
(¢.e. sub-population) levels is beginning to emerge, (Ruxton, 1994, 1996a; Rohani ez a/., 1996;
Amarasekare, 1998; Doebeli and Ruxton, 1998). The principal differences between this
approach and the classical view of metapopulation dynamics are (a) the recognition that the
patches in a metapopulation may have different area, suitability, local dynamics and
connectivity to other patches, and (b) the realization that migration rates may be sufficiently
high so as to impinge upon the local dynamics of sub-populations (Hanski and Simberloff,
1997). A considerable body of theory has now been built up around the interactions of
migration rates and local dynamics, and the consequences of this interaction for the stability
of the local dynamics, as well as for the stability, in terms of total number of individuals
rather than proportion of occupied patches, for the metapopulation as a whole. In this
section, we will briefly discuss some of the predictions arising from this theory and, in
chapter 6, we will describe a recent study in which some of these predictions were tested
using experimental laboratory metapopulations of Drosophila. Although little empirical work
has been done on the interaction of migration rates and stability in metapopulations, we
want to spend some time on this issue because it seems to us that our understanding of local
and global stability in metapopulations could be greatly enhanced by work on model
laboratory systems. Indeed a few laboratory studies on the impact of metapopulation

structure on extinction of populations have highlighted the utility of laboratory systems for
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these kinds of investigation (Forney and Gilpin, 1989; Burkey, 1997). Rigorous field studies
testing predictions about the impact of migration on metapopulation dynamics are extremely
difficult to conduct, largely as a consequence of the difficulties of empirically establishing the
dynamics of local populations and estimating colonization and migration rates in the field
(Ims and Yoccoz, 1997; Stacey et al, 1997). It typically requires immense effort even to
demonstrate that a particular assemblage of field populations fulfills the criteria for being
considered a metapopulation (e.g. Hanski et al., 1994; Harrison and Taylor, 1997; Lewis et
al., 1997; Morrison, 1998).

Many of the theoretical studies on metapopulation stability that explicitly incorporate
local dynamics were meant to ask whether metapopulation structure (patchiness) could
stabilize systems of interacting species (competitors, mutualists, host-parasitoid or predator-
prey systems) that would otherwise result in one or more of the interacting species going
extinct (eg. Levins and Culver, 1971; Hastings and Wolin, 1989; Caswell and Cohen, 1991;
Sabelis ¢z al., 1991; Nee and May, 1992; Hanski and Zhang, 1993; Comins and Hassell, 1996).
Stability in these models was, thus, viewed in the sense of ensuring long-term coexistence of
the interacting species, and some empirical studies have attempted to test whether migration
among patches really helps in ensuring coexistence of interacting species. In some
continuous time predator-prey models the introduction of spatial heterogeneity may lead to
chaos that is otherwise not observed with spatial homogeneity (Pascual and Caswell, 1997).
Unfortunately, the evidence from field studies, however carefully conducted, is often of a
tentative and qualitative nature. There is evidence that the added spatial dimension of
metapopulation structure can ensure coexistence, over periods of time far longer than a
single patch would sustain, of several greenhouse and field systems of herbivorous spider

mites and their predators (Huffaker, 1958; Laing and Huffaker, 1969; Nachman, 1981, 1991;
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van de Klashorst ef a/, 1992; Walde, 1995), as well as of competing boreal mosses, Tetraplodon
angustatus, T. mmnioides, Splachnum ampullacenm and S. lutewmr (Marino, 1991a,b), and of the
ragwort, Senecio jacobaea, their herbivore moth, Tyria jacobaeae, and its parasitoid, Cotesia
popularis (Van der Meijden ez a/, 1991; van der Meijden and van der Veen-van Wijk, 1997). At
the same time, herbivore-host plant interactions can often be destabilized by metapopulation
structure, especially when inter-patch distances are large relative to the dispersal ability of
predators or parasitoids of the herbivore (Kareiva, 1987; Roland and Taylor, 1995).
Qualitative predictions about extinction versus persistence of interactions, at least within the
time scale of empirical studies, are relatively easy to test, not only in the laboratory but also
in the field, either in controlled experiments, or through access to long-term records where
one of the species in the interaction is an economically important pest.

The more specific theory dealing with the impact of migration on local and global
dynamics in metapopulations, however, is not so easily tested empirically, especially under
tield conditions. The predictions here are more detailed, and take into account, and address,
the nature of the local dynamics in the individual sub-populations. For example, some
models suggest that increasing migration rates tend to increase the coherence among sub-
populations exhibiting relatively large fluctuations in numbers through synchronizing the
fluctuations across sub-populations, thus bringing them into phase with each other
(McCallum, 1992; Hastings, 1993; Holt and McPeek, 1996; Ranta ez a/, 1997a; but see also
Ruxton, 1996a). This effect could be destabilizing at the metapopulation level as it would
cause total metapopulation size to fluctuate with a relatively higher amplitude, raising the
likelihood of a chance extinction of the entire assemblage of local populations. Cleatly, in
this context, global noise, associated with large-scale effects such as climatic variations, is a

correlating influence that tends to synchronize local dynamics (Ranta e a/, 1997b; Earn ef al,
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1998; Grenfell ez a/, 1998), and can therefore be globally destabilizing if the sub-populations
are not relatively stable. Local noise, on the other hand, tends to desynchronize the
fluctuations of individual sub-populations. If the local dynamics are chaotic, this can magnify
the desynchronizing effect of local noise, leading to enhanced stability at the metapopulation
level as a result of different sub-populations fluctuating out of phase (Sol, and Valls, 1992;
Adler, 1993; Allen et al., 1993). Thus, broadly speaking, many models suggest that greater
migration in metapopulations is likely to be destabilizing at the global level when local
dynamics involve large fluctuations in numbers. However, migration alone, in the absence of
global noise, may not be able to enforce synchrony if the local fluctuations are erratic and of
large amplitude (Haydon and Steen, 1997).

On the other hand, some models suggest that migration, especially if density-dependent,
could play a stabilizing role at the metapopulation level by acting to stabilize the local
dynamics of sub-populations. In general, migration even at constant rates can stabilize
chaotic dynamics of simple population models, like the linear and exponential logistic
models, by altering the behavior to either sustained periodic cycles or stable equilibria (Sinha
and Parthasarathy, 1994; Parthasarathy and Sinha, 1995). Constant immigration/emigration
terms can also significantly alter the dynamics of extinction in these simple population
models (Sinha and Parthasarathy, 1996). Similarly, density-dependent migration can have a
stabilizing local effect by suppressing the fluctuations of individual sub-populations, thus
also reducing overall fluctuations in metapopulation size. In fact, in systems of populations
where the local dynamics are chaotic, following the exponential logistic model, introduction
of low levels of migration can actually stabilize local dynamics, with sub-populations
exhibiting either stable cycles or stable equilibria rather than chaos (Ruxton, 1994). Yet other

theoretical studies suggest that migration in a single-species metapopulation where local
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dynamics follow any of a variety of simple discrete-time models may be expected to have
negligible effect on stability at the local level (Hastings, 1991; Gyllenberg ez a/, 1993; Hassell
et al, 1995; Rohani ez a/, 1996; Ruxton, 1996b).

It is clear from the body of theoretical work on this issue that how exactly migration
rates may affect local and global stability in metapopulations will depend on a multitude of
factors including the form of local dynamics, the nature (local or global, density dependent
or independent) and magnitude of migration among sub-populations, and the extent and
magnitude of local and global noise. Many of the details of how these factors can interact
obviously await further theoretical work. It is also evident, moreover, that there has been
practically no empirical work on the effects of migration on stability of the dynamics of
metapopulations, as opposed to stability in the sense of persistence versus extinction: the
most recent comprehensive review of metapopulation biology (Hanski and Gilpin, 1997)
does not mention even one empirical study examining this important issue. One of the
reasons for this state of affairs, we feel, is the almost exclusive focus on field studies in
metapopulation biology, with a few notable exceptions (e.g. Huffaker, 1958; Forney and
Gilpin, 1989; Nachman, 1991; Burkey, 1997). In any empirical test of the predictions of the
models of the effect of migration on metapopulation dynamics, it will be imperative that the
experimenters be able to manipulate local dynamics and migration rates at will. This is
extremely difficult, if not impossible, to do under field conditions. However, such fine
control over the dynamics of real populations can be attained in a laboratory setting, as we
shall discuss in chapters 5 and 6. Thus, in our opinion, laboratory systems may be of great
significance in providing the means for empirical validation of some of the more detailed
predictions about the interactions between migration, noise and underlying dynamics in

metapopulations, which in turn, may catalyze the development of more appropriate models
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of metapopulation dynamics. This field of work is in an embryonic stage at present.
Nevertheless, we hope that the foregoing account, and our discussion of an empirical study
of laboratory metapopulation dynamics in chapter 6, will draw the attention of readers to the
vast potential of laboratory systems in this regard.

WHY ARE WE INTERESTED IN STABILITY?

The stability of populations is intimately related to the factors that determine population
growth and are, thus, of obvious interest to ecologists. However, there are several reasons
for specifically wanting to understand the general stability properties of populations, some of
which are related to major problems in conservation biology and evolutionary biology.

Population Extinction

It seems logical that one consequence of unstable population dynamics would be an
increased chance of population extinction. This assumption has led some workers to suggest
that populations with unstable dynamics will be rarely observed because such populations
will go extinct at higher rates than more stable populations (Thomas et al., 1980; Berryman
and Millstein, 1989). Allen et al. (1993) have also suggested that chaotic population dynamics
in conjunction with population substructure may, on the contrary, enhance species
persistence. However, Allen et al. (1993) have also suggested that chaotic population
dynamics in conjunction with population substructure may in fact enhance species
persistence. While the relationship between population stability and extinction is not simple,
the two are clearly intimately related.

Effective Population Size

An important force in the evolution of populations is random genetic drift, and the

magnitude of drift a population undergoes is inversely proportional to its size. If the

effective population size is reduced, rare genetic variants tend to be lost from the population
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and loci are more likely to become homozygous. Moreover, in relatively small populations,
selection will be less effective at either increasing or decreasing the frequency of alleles with
small effects on fitness. When the size of a population varies over generations, the effective
population size is equal to the harmonic mean population size and is, thus, especially
sensitive to small population sizes. Consequently, a few generations of fairly low numbers
can cause a rather disproportionate decrease in effective population size. Thus, even if a
population varies randomly and symmetrically about some mean population size, the
effective population size will decline as the amplitude of the fluctuations about the mean size

increases (fig. 1.1).
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FIGURE 1.1. Decrease in effective population size with increasing variation in symmetric random
fluctuations about the mean size. Data were generated by simulating 100 generations of
population growth with the dynamics governed by a logistic equation with r = 1.8 and K = 1000.
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Every generation a random variable (~N (0,s%)) was added to the log of the population size, and it
is the value of s that is shown on the x-axis.

Such variation in population size can be induced by either random variation in
environmental factors, or by the nature of density-dependent regulatory mechanisms. In
both cases, variation in populations size will tend to reduce the effective population size,
rendering the population more susceptible to the effects of random genetic drift.

Fitness in Age-Structured Populations

Fitness in age-structured populations depends on a weighted average of genotypic age-
specific survival and fertility values (Charlesworth, 1994). Typically these fitnesses are
computed under the assumption that a population has a stable-age distribution. Therefore, if
a density-regulated population is not at a stable equilibrium point, these fitness calculations
will be wrong, and this problem exists even if selection itself is not density-dependent. There
has been little research or attention given to the implications of unstable population
dynamics on evolution in age-structured populations although there may be many
populations where these conditions are met.

WHY DO LABORATORY EXPERIMENTS?

For most other branches of Biology this question would seem naive at best. In order to
control variables except those of interest, replicate experiments under well-defined
conditions seem obvious and necessary. Yet in ecology there is a long tradition and interest
in, collecting observations and doing experiments in uncontrolled, or semi-controlled natural
environments (Carpenter, 1996). The most compelling argument for this tradition is that
Ecology is ultimately interested in the factors that affect the abundance and distribution of
plants and animals in their natural environment. Consequently, many believe that
observations in the laboratory environments will not add to our understanding of nature

(Peters, 1991).
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This type of argument is not confined entirely to Ecology. For instance much research in
aging has focussed on the aging of individual cells. However, the utility of this information
to inferring the mechanisms that affect the aging of whole organisms is debatable. One
reason why the behavior of aging cells may not inform us about whole organism senescence
is that the process of aging is largely determined by natural selection and may be, therefore,
expected to have heterogeneous causes among both organ systems and species (Rose, 1991).

However, we feel that the argument against laboratory experiments in ecology is far less
compelling than that outlined above for the irrelevance of studying cellular aging to
understanding organismal senescence. There is a tendency in many discussions in ecology to
speak of "nature" as if it were a single, well-defined, set of conditions. In reality, of course,
the natural environment is heterogeneous over time and space (fig. 1.2). Thus, the "natural"
environment of a species in one year or season may be quite different from the "natural"
environment in the next year or season. In that sense among the infinite hierarchy of

environments the laboratory may be no more or less special than any other.
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FIGURE 1.2. Temporal and spatial scales of ecological studies. This figure emphasizes the time
and spatial scale that ecological studies represent by showing the ever-narrowing range of a
particular field site. Thus, a tree and its insect flora in Mt. Shasta, California is just one of several
trees in the immediate forest, which may be one of a very large number of forests in the world.
Likewise, the observable events in one year may or may not be characteristic of the past 100
years, which may be quite different from earlier epochs on earth.

Certainly our ability to develop and test theories in ecology is not at an advanced stage.
We are not yet at the point where our theories can incorporate and deal with the myriad of
variables that are constantly changing in nature (Drake et al., 1996). The impatient ecologist
will often suggest that perhaps the many details will not matter, and only competition, or
only predation will matter and thus they are willing to hold their theory up to data from
natural populations. This approach typically requires choosing data sets carefully and

developing an ad hoc rationale for dismissing apparent contradictions to theory.
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In our opinion, the laboratory is one of the best places to rigorously test ecological
theory. Many of these theories are bound to fail even in the simplified environment of a
laboratory. The ability to improve and reconstruct theory, however, will require that we
understand why our prior theories have failed. In the laboratory the ability to determine the
causes of theory failure will almost always be more straightforward and easy to diagnose than
in the field.

LABORATORY STUDIES OF POPULATION BIOLOGY

The use of laboratory studies in ecology and evolutionary biology has a long history.
Laboratory experiments permit certain aspects of the environment to be controlled and thus
remove confounding factors that exist in natural populations. However, there are a variety of
issues that need to be considered when designing laboratory experiments that we review
here. Although much of our focus is on ecological problems many of the issues we address
have been considered previously by Rose et al. (1996) in their discussion of laboratory
studies of evolution.

Starting Populations

Many problems in ecology and evolution are concerned with populations that are
normally outbreeding and genetically variable. This means that the populations brought into
the laboratory should also be genetically variable. Thus, the original samples should be as
large as practically possible. Laboratory experiments are sometimes started with isofemale
lines. Isofemale lines are initiated by placing single, inseminated females in their own culture.
Usually the progeny from these females then mate with each other for one or more
generations. Even if the isofemale lines are later pooled together the inbreeding and
subsequent crossing will lead to high levels of linkage disequilibrium that are unlikely to

characterize populations in nature.
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Some studies have utilized laboratory mutants or captive wild type stocks, especially
studies utilizing Drosophila and Tribolium. Visible morphological mutations often have
pleiotropic effects on many fitness traits that may affect population dynamics (Prout; 1971a;
Bundgaard and Christiansen, 1972). Laboratory mutant and captive wild stocks (like Oregon-
R in Drosophila or Canton-S in Drosophila), often have irregular or unknown maintenance
histories that can include frequent episodes of population bottlenecks or chronic
maintenance at low population size. Consequently, most laboratory stocks, whether mutant
or wild-type lines, make poor starting material for experiments in ecology and evolution. The
exception to this is laboratory stocks that have been consistently maintained at large
population sizes under a well defined and carefully controlled maintenance regime.

This problem can be illustrated with the following hypothetical example. Suppose a
human population was inbred and used for experimental research. In this particular
population the inbreeding gave rise to a group homozygous for the sickle-cell anemia allele.
Suppose this group is now compared to a second inbred population homozygous for the
normal hemoglobin allele (e.g. wild type). Certainly a lot can be learned about the how the
hemoglobin protein works by extracting hemoglobin from each of these two groups.
However, if you were unaware of the nature of the genetic differences between these two
groups, you might be tempted to argue that the wild type group contained alleles that
increased longevity and thus were the key to reversing aging (since those with sickle cell
anemia certainly don’t live as long as normal individuals). You could also incorrectly
conclude that the alleles in the wild type population were the key to understanding stress
resistance since those individuals could outperform the sickle-cell population in a wide
variety of activities that require aerobic endurance. But in general the comparison of these

two inbred populations tells us nothing about the genetic or physiological factors that affect
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longevity or stress resistance in normal populations. Rather, they reveal the effects of a rare
genetic disorder that has been made common in one population through inbreeding.

As a real example consider inbred genotypes of D. melanogaster derived by the technique
of chromosome extraction (Mueller and Ayala, 1981d). These inbred genotypes show strong
positive correlations in rates of populations growth — those genotypes that grow quickly at
low density also grow quickly at high density and those that grow slowly at one density tend
to grow slowly at all densities (Mueller and Ayala, 1981d). What can we infer about the
evolution of population growth rates, or about high fitness genotypes, in natural populations
from these observations? The answer turns out to be - very little. In fact, when genetically
variable D. melanogaster populations are maintained for many generations in the laboratory at
cither high or low population density, the genotypes that rise in frequency and become
predominant exhibit trade-offs in stark contrast to the result obtained from the inbred lines:
the genotypes that do best at low density, grow more slowly at high density and vice versa
(Mueller and Ayala, 1981a, Mueller et al., 1991). Thus, the properties of inbred genotypes
bear no resemblance to the high fitness genotypes in the outbred populations that are
ultimately favored by natural selection operating at different densities.

Lab Adaptation

Studies in which the behavior of populations will be tracked over many generations must
also consider the possible effects of evolutionary change in the populations being studied. In
many ecological studies, such evolution may be undesirable because it may change important
properties of the population that the experimenter wishes to keep constant. However, wild
populations brought into the laboratory will inevitably undergo evolutionary change as they
adapt to food, temperature, crowding and other aspects of the laboratory environment that

differ from the natural environment of that population in the field. For instance natural
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populations of Drosophila brought into the laboratory show a continual increase in adult
population size as they adapt to the laboratory (Buzatti-Traverso, 1955; Ayala, 1965b, 1968).
Consequently, laboratory studies aimed at testing evolutionary or ecological theories may be
thwarted if the experimental and control populations are still adapting to features of the
laboratory environment. It is, therefore, most desirable to use large, outbred populations that
have had time (12 generations or more) to adapt to the laboratory environment as starting
material for laboratory studies in ecology and evolution.

Replicate Populations

Most experimental research in population dynamics and evolution utilizes whole
populations as the units of observations. Consequently, the power of any analysis will be a
function of the number of replicate populations. Experiments with just one experimental
and one control population have no power. Often the maximum number of populations will
be determined by practical factors like time and cost of maintenance. However, with five
replicate controls and five experimental populations one can meet the minimum sample size
requirements for several non-parametric tests (e.g. Wilcoxon’s signed-ranks test, Sokal and
Rohlf, 1981, pg. 448).

In ecological studies, replicates serve the traditional role of ensuring that observed
differences between experimental and control populations are a consequence of the
experimental conditions and not random, uncontrolled factors. In evolutionary studies,
However, the importance of replicates takes on a whole new dimension. Genetic differences
may always arise between two populations due to random genetic drift. However, most
laboratory studies are interested in genetic differentiation due to natural selection. Thus, the
observation of genetic differences between one-control population and one experimental

population does not help us distinguish between the relative importance of selection and
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drift as causative agents. However, it is unlikely that five or more replicate populations will
experience the same sequence of random events. Thus, in evolutionary experiments, the key
to distinguishing between drift, a stochastic force, and selection a deterministic force, is the
observation of consistent differentiation among multiple independent populations.

A related problem is the size of the replicate populations. If the primary interest of the
study is to investigate the outcome of natural selection then the replicate populations ought
to be as large as possible. There are two reasons for this recommendation. (1) In large
populations selection will be able to act effectively on alleles with small effects on fitness.
For instance, consider a locus with two alleles and hence three genotypes 4,4, A4,4,, and
A,A,. Let the fitness’” be additive and equal to 1+, 14+Y2s, and 1 respectively. If the initial
frequency of the favored A, allele is p, then fixation is virtually assured if Np > 5, where N,
is the effective population size (Ewens, 1979, pg. 147). As an example, in a population with
N, = 1000, where a favored allele exists as only a single copy, s would have to be 10 to be
assured of fixation. Thus, in most laboratory experiments we cannot be certain that very rare
favorable mutants will be fixed. However, an allele that is at a frequency of 10% is virtually
guaranteed of fixation if the favored homozygote has a 5% or greater advantage over the
alternative homozygote. If the population size had been 100 rather than 1000 the favored
homozygote would have required a 50% fitness advantage rather 5%. As N, , s and p become
smaller the chance of a favored allele becoming fixed decreases and conversely the chances
that the disfavored allele will be fixed increases. When N, s < 0.1, the chance of fixation is
very close to that of a neutral allele.

(2) Small populations increase the chance that deleterious alleles will be fixed and thus
potentially obscure the effects on fitness of beneficial alleles at other loci. This is especially

likely to be the case when life history traits are examined since there appears to be abundant
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genetic variation with deleterious pleiotropic effects on survival and fertility (Lewontin,
1974). For neutral alleles that are fixed by drift it takes on average 4N, generations for
fixation. Alleles that directly affect fitness will take longer to be fixed on average, although
their ill effects will be apparent well before they are fixed in a population.

These concerns extend to ecological studies as well. Drift and inbreeding may impact life
history traits that ultimately affect population dynamics in a significant fashion. For instance
population stability is often dependent on female fecundity. However, inbreeding may
significantly reduce female fecundity and thus the dynamics of a population about
equilibrium (see chapter 6 for a detailed discussion).

Measuring Genetic Differences

Many laboratory studies with an evolutionary component will ultimately need to
determine if there are genetic differences between populations. Often the interest is not in
the particular frequencies of alleles in each population but in the unknown alleles and loci
that affect quantitative traits. These traits are often affected by the environment and
sometimes by the maternal environment. As an example, in Drosophila the level of larval
crowding affects the ultimate size of the adult, small adults emerge from crowded cultures.
However, phenotypes, like longevity (Miller and Thomas, 1958), and fecundity (Chiang and
Hodson, 1950) are affected by adult size. Smaller adults tend to live longer and smaller
females lay fewer eggs. The maternal environment may also be important. Egg-to-adult
viability in Drosophila is reduced as parental age increases (Rose, 1984).

These effects can be removed by rearing test organisms for two generations in a
common environment. Thus, one would sample adults directly from the control and the
experimental populations and let them produce offspring under common conditions. The

progeny that emerge from this generation will all have experienced a common environment
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but may differ due to differences in their parent's age or nutritional state. Thus, one more
generation is needed to obtain juveniles or adults that can be assayed for phenotypes of
interest. If there are significant differences between experimental and control populations in
the second-generation individuals these can be attributed to underlying genetic differences
between the two populations.

EVALUATING MODELS IN POPULATION BIOLOGY

The analysis of population stability will inevitably require some characterization of the
study organism’s population dynamics. This characterization will often be in the form of a
mathematical model. We use the word model to generally mean an abstraction and typically a
simplification of a biological process. From this definition it is clear that a model need not be
mathematical but could be a verbal description of the abstraction. Of course the virtue of
mathematical models is that their implications may be studied by the formal and generally
understood techniques of mathematical analysis.

Some mathematical models may represent important biological theories. For instance
when considering population dynamic models we may construct them by careful
consideration of the life history of a particular organism and the various ways these life
histories are affected by biological attributes like, density or age. A comparison of the
predictions of these sorts of models to empirical observations is then, to some extent, a test
of our biological understanding of life history.

Models can also be constructed from simple statistical techniques. Thus, the dynamics of
a population may be modeled by a high-order polynomial whose coefficients have no
biological meaning but have been estimated from a set of observed population trajectories.
In either case the utility of a model may ultimately be assessed by comparing its predictions

with a set of observations. The manner in which this is done varies greatly. With reference to
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population dynamics comparing goodness of fit to some existing data set may help assess
different models. Alternatively, the ability of the population dynamics model to predict new
observations may be used as a criterion for model selection. In some cases the model may
predict unusual behavior in altered environments and these predictions can be tested
experimentally.

Royama (1971) has reviewed some of the major factors that may lead to differences
between a models predictions and empirical observations. Royama makes the obvious but
sometimes unappreciated point that such differences don’t always mean the model is wrong.
A model can be viewed as consisting of two features. (i) There are the components of the
model. For a population dynamic model these components might be pre-adult survival, adult
survival from one age class to the next, adult fertility etc. (if) The structure of the model
must also be specified. Using the example of population dynamics we would need to specify
how the different components of the model interact. If survival showed density-dependence,
does it change in a linear fashion with density or in some non-linear fashion? Clearly, there
may be differences between the predictions of a model and observations from experiments
or field populations because the components or the structure of zhe model may be wrong or
insufficient. However, differences between the model predictions and observations may also
arise because the conditions under which the observations were collected violate specific and important
assumptions of the model. Thus, a natural population may never shown a sustained and constant
equilibrium population size because the level of essential resources varies over time and is
not constant as assumed by a simple model of population dynamics.

The remedy to take in each of these cases is quite different. If we can reasonably
conclude the model is wrong then we need to adjust it in a way that is suggested by our

experimental findings. However, if the original observations are suspect then we need to find
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or design an experimental system that can adequately test the model. Unfortunately when

observations have been made in natural populations it is often too easy to invoke the

uncontrolled aspects of the environment as the culprit for a model’s failure. Well designed

laboratory experiments should permit us reject models only when their predictions are

discordant with observations. This is ultimately the power of strong inference (Platt, 1964).
GENERAL I”S. SPECIFIC MODELS

An important component of all scientific research is the transition from theoretical
predictions to experimental tests. The theory of population genetics and ecology often
assumes discrete generations and populations without stage or age-structure. Problems arise
when these theories are tested with organisms that depart from these assumed life-histories.
For instance organisms like Drosophila can be made to reproduce on a discrete schedule and
adult age-classes can be eliminated but the pre-reproductive stages of Drosophila can never be
removed. Attempts to estimate fitness coefficients from simple population genetic models
with organisms like Drosophila can be thwarted by selection acting on the different
components of the life cycle (Prout, 1965, 1971a, 1971b). This coupled with the necessity to
assay adults rather than eggs meant that the most general models of selection were
inappropriate for providing a framework for observations in the simplest of Drosophila
populations.

Prout has also recognized that similar problems will occur in simple models of
population dynamics (Prout, 1980, 1985, 1986). For instance the simplified life cycle of
Drosophila in the laboratory will always have three different census stages, larvae, pupae and
adults. A model keeping track of population size might refer to any one of these life stages.

If selection acts in a density-independent fashion it is possible for evolution to increase,
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decrease or have no effect on equilibrium numbers of particular census stages. Any general
claim that selection will always maximize population size is not true.

Prout has also noted that in some organisms fertility depends on their pre-adult density.
Crowding during these stages often has lasting effects on adult size that in turn affect
fertility. 'This biological phenomenon posses some difficult problems for estimating the
underlying population dynamics from data on adult numbers only. While this problem is not
insurmountable (we discuss some solutions to it in chapter 2), in fact we discuss solutions to
it in chapter 2, it must be considered in the development of model experimental systems.

The issues discussed above raise the general question of the most appropriate type of
model to use when developing theory in life-history evolution in general. Christiansen
(1984) makes a distinction between phenomenological and explanatory models. The
phenomenological models are simple and attempt to summarize the totality of density-
dependence or other factors with a single simple function (e.g. the logistic). For these
reasons the models are thought to have greater generality (Levins, 1968). Whereas
explanatory models explicitly take into account specific components of the life cycle of some
organism or group of organisms and try to model the response of these life history
components to density, parasites, etc. These latter models will have less generality since the
life historical details included in these models may vary from one taxonomic group to
another. Christiansen argues this is the most appropriate way to develop theory for the study
of life history evolution in variable environments. Certainly, if theory is being used to make
specific predictions about the evolution of a particular population one can not use a model
which ignores crucial life history details.

Despite the simplicity of the laboratory environment, the design of good experiments

with model systems is a multifaceted affair and must be planned carefully. However, once
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the careful planning is done. there are great benefits to be derived from experiments with
model systems, and we use the rest of this book to develop some of the knowledge about

population stability learned from experimental work on model systems in the laboratory.
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CHAPTER TWO

Theory of Population Stability

Many of the problems associated with population dynamics have been originally
suggested by the analysis of simple models. These models may often be unrealistically
simple but are useful starting points in the exploration of population dynamics and,
moreover, have substantial heuristic value. In this chapter we review the classical
mathematical techniques for determining the stability characteristics of these simple models.
By devoting some attention to specific methods, the mathematical meaning of stability
should become apparent. In addition, these methods will aid in our discussion of the
various techniques that have been suggested to empirically determine population stability
since many of these techniques mimic the mathematical analysis of stability. In this chapter
we will focus on the stability concepts for deterministic models. In the next chapter the
concepts of stochastic stability will be reviewed.

The application and use of simple models requires careful evaluation of important life-
historical features of specific organisms. We review the consequences of age-structure and
interactions between different life stages on the ability to infer population stability. These
issues will be important since it is often not possible to collect all relevant information from
laboratory or natural populations. For example, often one has information on total numbers
but not the number of individuals in each age-class or sex. We need to know if we can make
accurate inferences concerning population stability with incomplete data and, if not, how
serious the impact of the lack of various specific details is on our ability to draw inferences
about population stability.

Populations typically harbor genetic variation for life history traits which can directly

affect population stability (Mueller and Ayala, 1981c). Consequently, population stability
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may evolve in concert with these life history traits, possibly as a by-product of the evolution
of these traits. Understanding, the conditions that foster the evolution of population
stability may help us interpret observed patterns in natural populations (Turchin and Taylor,
1992).
FIRST ORDER NON-LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS
A simple model is often one that has few parameters. For models of population growth,
this usually means that the size of the population is assumed to depend only on one
immediate past population size. If an organism reproduces continuously, and all members
of the population are considered to be equivalent, then the most appropriate description of
population dynamics is through the use of differential equations in continuous time. If we

let N be the total number of individuals in the population, then the rate of change of this

number, d%t , will depend on the current population size according to some function f{IN).

When fA(N) is a nonlinear function the resulting model is a non-linear differential equation.
Non-linear differential equation models clearly presume that the effects of density on
reproduction and survival are instantaneous, which may, in fact, seldom be the case for many
populations.

An alternative modeling approach is to assume that reproduction in the population is
synchronized, but is preceded by a period of development or, at least, an absence of
reproduction. Following reproduction, the adults may all die, leaving only the progeny to
form the next generation. Alternatively, we may assume that some fraction of the adults
survive to the next generation. However, in these discrete time models, as with the
continuous time models, all members of the population are considered equivalent. Thus,
adults who survive must have the same capacity for reproduction, as the newborn progeny

(i.e. there is no adult age-structure). Since time can be meaningfully viewed as changing in
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discrete steps, the general form of these models will be of a difference equation wherein
population size at time 7 depends on that at time ~1 (IN, = g(IN,,)). The function g(IN,,) can be
decomposed into two parts, N,, x (the per-capita growth rate, A(IN,,)). The pet-capita
growth rate is typically assumed to decline with increasing population size due to biological
factors such as density-dependent survival and fertility (Begon et al., 1990, pgs. 206-209).
The precise form of the decline differs among models and, in the simplest case, can be
assumed to be linear (although the function g(IN,1) will still be non-linear). We can illustrate
this type of model with three different formulations of density-dependence of per-capita

growth rates (Prout, 1980),

Z(Nt) =a, +a,N, (linear),

a, .
/1( Nt) = m (hyperbolic),
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/1( Nt) =a, exp[a, N,] (exponential).
The model using the formulation of growth rate as a linear function of density gives rise to a
model of population growth called the linear logistic or the quadratic map. Typically, the
linear logistic equation is presented with two parameters, 7 (which equals a1 - 1) the intrinsic
rate of growth, and K (which equals (1 - a1)/a2) the carrying capacity. This model may also
be derived by considering the reproduction and dispersal of single individuals (Lomnicki,
1988). The exponential formulation yields a model of population growth variously called the
exponential logistic or Ricker map. Parameters of the three models have been estimated
from observed population sizes in a single population of Drosophila melanogaster (fig. 2.1). The

predictions from all three models give reasonable descriptions of the observed population
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FIGURE 2.1. The circles show the number of adults in the HL; laboratory population of
Drosophila melanogaster studied by Mueller and Huynh (1994). The lines are the predicted
population sizes from models (2.1-2.3) based on maximum likelihood estimates (Dennis et al.,
1995, see Box A). The solid line is the predicted population size from the logistic equation, the
dotted line is the predicted populations size from the hyperbolic equation and the dot and dashed
line is the predicted population size from the exponential model.
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sizes. One point we wish to stress in this book is that the simple observation Of
concordance between observed and predicted population sizes by itself provides only weak
support for a model. To gather strong support for a theory would require one or more of
the following types of observations, (i) obtain estimates of the model parameters
independently of the population dynamics and then produce accurate predictions, (i) the
correct prediction of qualitatively different dynamics that would be expected under certain
conditions which the model correctly predicts (for instance among models 2.1-2.3 the
logistic and exponential models can produce cycles and chaos whereas the hyperbolic model
can not), or (iii) use the model to make predictions about other aspects of the population
(e.g. numbers of other life stages or average adult size etc. ) which can then be used to

independently verify the model.

Maximum Likelihood: Suppose we have a sample of n, random variables, x;, X,, ..., X,. These

may be either discrete or continuously varying random variables. The probability density function
is assumed to depend on the value of the random variable and a parameter 0, and is represented

by, f(xi|6). We then define the likelihood function for a particular sample and values of 6 to be,

n
L@ =] (x16).
i=1
If x; is a discrete random variable then the likelihood function will be equal to the probability of

drawing the observed sample. The maximum likelihood estimate of 0 is designated & and is
chosen to maximize the likelihood function. In the simplest cases we can use elementary calculus

to find the value of 0 that satisfies,

a©) _

0.
24

Often times it is easier to find the maximum if we first take the log of the likelihood function.

Some density functions may have k-random variables rather than one that are subject to
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k

constraints, like 249, =1. These problems require a more sophisticated method of finding the

i=1
maximum called, Lagrange multipliers (Intriligator, 1971, pg. 28). If the derivative of the likelihood
function can't be solved analytically then numerical methods must be used to find the maximum
(Beveridge and Schechter, 1970).
Dennis and Taper (1994) discuss applications of maximum likelihood techniques to
population data. Suppose we have a time series of m+1 population sizes, Ng, Ny, ..., N,,. We
believe the dynamics of this population to be governed by a simple first-order difference equation,

N = Nt.1g(N¢1). If we let x; = In(N,) then random noise can be introduced into this equation as,

X, =X,y + In[g(Nt_l)] +2,,,
where z, is assumed to be normally distributed with mean 0, and variance ¢°. Next compute the

density function of x; conditional on the previous log-population size, X as,

1 exp (Xt - (Xt—l - Ingg(Nt—l)]))
270° 20

2

F(xilxiy) =

Then the likelihood function is defined as,

20 i

m 1 1 m 2
L(®) = 1:1[ f (X [xy) = We)(p{_ 2 — (Xi — X, —1In g[Ni—l ) }

The derivative of this function must be taken with respect to o and the parameters of the

function g(N;). The resulting equations are set to zero and their solutions found.

Continuous time versions of models 2.1-2.3 can be produced by deriving expressions for
N,., - N, A differential equation can be obtained by letting this time difference go to zero.

In that case the three new models can be written using the notation above as,

—=N(a, —1+a,N) (linear, often referred to as the continuous time logistic

dt

model),
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dN (al—l—azNj -
gt =\ 14a,n ) Byperbolio,

dN .
i N [al exp(a,N) — 1] (exponential).
The right hand side of each equation (2.4-2.6) has IN multiplied by a term in parenthesis.
This term is no longer a per-capita growth rate but is the instantaneous increase in
population size due to the difference between births and deaths. To find equilibrium points
of the discrete time models, we determine the population size at which the per-capita growth
rates are equal to one, e.g. the density at which each individual in the population can just
replace itself. To find the equilibrium of the continuous time model one must determine the
population size at which the instantaneous increase is exactly zero, meaning births just
balance deaths. An important property of models, both discrete and continuous time, of this
type is whether the equilibria just described are stable. We next review the standard
mathematical techniques for answering this question.
STABILITY OF FIRST ORDER NON-LINEAR DIFFERENCE AND
DIFFERENTIAL EQUATIONS

In this section we will focus mainly on the analysis of local stability, implying that the
statements concerning the behavior of the dynamical system will only hold in a small region
close to an equilibrium point. In contrast, a globally stable equilibrium is approached from
all feasible population sizes. Conceptually, analyzing local stability involves determining the
dynamics of the system in a region close to the equilibrium point of interest. The word
“close” for our discussion means that the range of population sizes examined will be
sufficiently narrow that we can approximate the non-linear functions describing the

dynamics with linear functions. The mathematical technique that is used to produce this
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linear approximation is called a Taylor series expansion. An outline of Taylor’s Theorem is
given below in box B. The discussion of the stability of growth models which follows can
be found in many elementary texts, and a particularly nice example for population growth

models is given in Roughgarden (1979).

2.7)

(2.8)

Taylor Series: Taylor's theorem provides a convenient means of estimating certain types of

complicated functions. If the function can be differentiated then in principle the function can be
approximated to any desired degree of accuracy. If we consider only functions of a single
variable, x, then we also need to choose a single value of x, x*, which will be close to the values
of x we wish to use in our function. The estimates provided by Taylor's theorem will be most
accurate when x is close to x*. The level of accuracy depends on both the form of the function
and how many terms in the Taylor series are used. If we let the function be f(x) and f(”)(x*) be the

nth derivative of f(x) evaluated at the point x*, then Taylor's Theorem says,

f(x)=f(x*)+—-> (X=x*) f (l)( X*) + (2—*)2 f (2)(X*) + +(X_n—)|(*)n f (n)(x*)
(X— X*)n+1 o
TR CY

where &, is some point on the interval where f(x) is defined. The last term in equation (2.7) is
called the remainder and its exact value is typically unknown. The Taylor series approximation
(or expansion) of the function f(x) is all terms on the right hand side of equation (2.7) except the
remainder. As an example let's consider the exponential function, €. The value of the nth
derivative is always e*, for all values of n. If we center the Taylor series approximation around

the point, x* = 0, then the approximation looks like,

2 X3 Xn

X
~1+x+?+§+ +—!

If we use just the first two terms in equation (2.8), then our approximation of €% is 1.1 while the

exact value is 1.105. However, as we try to get estimates with values of x further from zero the
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accuracy of the prediction gets worse. Thus, the approximation to e'*, using just two terms of the

Taylor series, is 2.1 while the exact value is 3.00.

2.9)

(2.10)

In our discussion of local stability analysis, we first consider continuous time growth

models. An equilibrium for these models must satisfy the condition that

dl%t = f(N)=0. The problem we must solve is to describe the behavior of a small

perturbation, €, to this equilibrium, N = N + &. Does the perturbation die off to zero and
return the system to the equilibrium population size N, or does the perturbation increase in
magnitude and move the population away from the equilibrium? To study this we will
approximate the effect of the perturbation on population size, f(N + &), with a Taylor

series expansion about the point, N, and use just the first two terms in the series. This leads

us to,

N _ZWUNTe) P8 L sN DO (NYe— fON
T S s D N)e= O (N,

Equation (2.9) can then be integrated to find the time dependent behavior of €. This
produces the result that,
&(t) = g(0)e Mt

Consequently, if the first derivative, A/D(N ), is less than zero then €(A—> 0 as 7> o (read the
symbol “—” as “goes to”). That is, the population returns to the equilibrium, N. If f/D(N)
is greater than zero, then €(— o as /= o0. In other words, the population size departs
from the equilibrium at an exponential rate of increase, at least initially. As an example, for
the linear or logistic model (eq. 2.4), A(N) = 1 - @ or r. Thus, local stability of the

equilibrium, N, is insured if @1 > 1, or »> 0. Since r is the maximal per-capita instantaneous
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rate of increase, under ideal conditions, it will be positive unless the population is declining
in numbers with time and is inviable in the long run. Thus, the continuous time logistic
model predicts a stable equilibrium for any increasing population.

In discrete time models, an equilibrium must satisfy the condition, g(N) = N. As
before, we need to examine a perturbation to the equilibrium, €. We study the time
dependent behavior of this perturbation by noting,

N+ =9(N+2)=g(N)+g?(N)g =N+g?(N)s.

If we subtract N from both sides then we get the solution,

A N t+1
£a 20" (N)e =[g?(N)] 4,

Thus, equation (2.11) predicts that stability will be insured if, |g @ (N )‘ <1. If ‘g @ (N )‘ =1,

then further analysis is required and if, |g® (N )‘ > 1 the equilibrium is unstable. Sometimes

the quantity, ¢ @ (N) , is referred to as the leading or stability determining eigenvalue.

Using this approach, we have determined the equilibrium population size and stability
determining eigenvalue for that equilibrium for each of the discrete time models 2.1-2.3

(Table 2.1).
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TABLE 2.1. The equilibrium population size, N, and the stability determining eigenvalue, A, for
the discrete time models 1-3.

Model N A
Linear logistic 1-a, 2-a;
a,
Hyperbolic a, -1 1
a, a,
Exponential 1 1-In(a
P - In(a,) @)
2

It is worth noting that, for biologically reasonable values of the parameters a1 and a2, the
linear logistic and the exponential model can produce eigenvalues of absolute value greater
than one, whereas the hyperbolic model can not. Careful examination of equation (2.2)
shows that the parameter @1 will equal the per-capita growth rate of the population when N
is very small. For that reason it must at least be positive. In fact 1 must also be greater than
one or else the equilibrium at N = 0 is stable, i. e. the population goes extinct. With a1 > 1,
the stability determining eigenvalue for the hyperbolic model is always less than one. Hence
the hyperbolic model predicts that all feasible equilibria with K > 0 will be stable.

We illustrate models (2.1-2.3) with another set of data from a population of D.
melanogaster (fig. 2.2) with very different growth characteristics than the population illustrated
in figure 2.1. We discuss the causes of these differences in more detail in chapter 6. What is
clear from the figures themselves is that the population in figure 2.2 is fluctuating more
violently than the population in figure 2.1, and over the nine generations of observations

shown has not settled down to what might be considered an equilibrium population size.
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FIGURE 2.2. The circles show the number of adults in the LH; population of Drosophila
melanogaster studied by Mueller and Huynh (1994). The lines are the predicted population sizes
from models (2.1-2.3) based on maximum likelihood estimates (Dennis et al., 1995). The solid
line is the predicted population size from the logistic equation, the dotted line is the predicted
populations size from the hyperbolic equation and the dot and dashed line is the predicted
population size from the exponential model.

For the populations illustrated in figures 2.1 (HL1) and 2.2 (LHi) we present maximum
likelihood estimates for the parameters of models 2.1-2.3 (Table 2.2). Of interest is the value
of the stability determining eigenvalue, A, predicted by each of these models. For all models
|A] <1 for population HL; (fig. 2.1) suggesting that a stable equilibrium exists. Howevet,
for the population LH; (fig. 2.2) the linear and exponential models predict that the

equilibrium population size, N, is unstable.
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TABLE 2.2. The parameter estimates for three models and two populations of Drosophila
melanogaster, HL; and LH; shown in figures 2.1 and 2.2 respectively.

Model Parameter Estimates

Model Population @ N A Stability of N
Linear HL, 1.701 -0.000885 792 0.299 Stable

LH; 3.06 -0.0031165 661 -1.06 Unstable
Hyperbolic ~ HI, 1.83 0.00103 805  0.546 Stable

LH; 205x 108 655x 105 313 488 x 109 Stable
Exponential HI 1.76 -0.000710 796 0.435 Stable

LH; 7.69 -0.0047 434 -1.04 Unstable

This brief analysis of data has illustrated an important point concerning the use of
models. Based on the results shown in figure 2.1, one is tempted to conclude that the three
models (2.1-2.3) all do an adequate job describing the dynamics of these Drosophila
populations. However, as discussed in chapter 1, simple agreement between observations
and predictions, especially when the predictions have relied on the observed data to some
extent, is not strong support for a particular model. Consequently, there must be a vigorous
search for methods independent of simple model fitting for validating population dynamic
models. We see through the analysis of the LH; population data that the hyperbolic model
is not capable of providing an adequate description of its dynamics. It seems sound to
conclude, therefore, that the hyperbolic model will not be a generally useful model for

describing Drosophila population dynamics.
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POPULATION CYCLES AND CHAOS
Cycles

A question that arises from the preceding discussion of stability is what happens in the
case of populations controlled by models (2.1) and (2.3) when their equilibrium points are
unstable? The moment the equilibrium points listed in table 2.2 become unstable, two new
stable equilibria appear and the population begins to cycle between them. This phenomenon
is known as period doubling or bifurcation (May and Oster, 1976). Since, the equilibrium
point is now unstable it acts as a repellor, meaning points close to it move away. Since the
instability is due to the eigenvalue becoming less than —1, points near the former equilibrium
will oscillate above and below the previous equilibrium as they move away from it. As a
result of this behavior this process is sometimes called flip bifurcation (Hilborn, 1994).

As the value of the parameter 1 in models (2.1) and (2.3) continues to increase, a
threshold value is reached at which the two point cycle itself becomes unstable, and each of
these equilibria further bifurcates to produce a stable four point cycle. These period
doublings continue until there are an infinite number of period doublings, and the
population exhibits a form of dynamics called chaos. For the linear model, the transition to
chaotic dynamics occurs when @1 = 3.57. We might qualitatively describe chaos as unstable,
aperiodic behavior (Kellert, 1993). Period doubling is just one of several pathways to chaos.
We will review these in more detail in the next section. To gain some additional insights
about the properties of these new equilibria let us first consider the stability of the pair of
equilibria which appear when a1 just exceeds 3.0 in the linear model.

If we iterate the models (2.1) and (2.3) for the parameter estimates obtained for the LH;

population (Table 2.2) it is apparent that each model appears to settle into a two point cycle
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(fig. 2.3). If we label these new equilibrium points, N1and N then, from (2.1), the linear

model must satisty,
Nl = Nz(al +a2N2),and
N, = N,(a, +a,N,).

Substituting (2.12b) into (2.12a) yields a cubic equation in N1 , which has three solutions.

One of these solutions is the previous equilibrium, , which is now unstable. The

2
other two equilibria are the points seen in figure 2.3, which in general must be determined
numerically. For the LHi population the equilibria are N1 = 572 and N2 = 730 for the
linear model, and N 1 = 330 and N 2= 538 for the exponential model.

We next turn to the question of the stability of this two point cycle. Formally the
mathematical analysis of stability for the two point cycle is done as we have outlined for a
single point equilibrium. The core idea is if the system is perturbed slightly from this two-
point cycle does it return to the cycle or move away (see May and Oster, 1976 for a more

detailed description). In the case of a two point cycle, the stability determining eigenvalue,

A2, is given by,
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FIGURE 2.3. Population size variation for the linear (2.1) and exponential (2.3) models. The
parameter values used were those estimated for the LH; population in Table 2.2.

213 % =9%(N)g"(N,),
and in general if there is p-point cycle, N1, N o, ..., N » the stability determining eigenvalue,
A, is given by,

2.14) 2, =9 (N))g¥(N,)--g@(N ).

Applying equation (2.13) to the LH; population we conclude A2 = 0.75 for the linear logistic
model and A2 = 0.84 for the exponential model. Thus, both models predict stable two-point
cycles.

In contrast to the discrete-time models discussed here, the simple continuous time
models we have considered do not produce cycles or chaos. This is essentially due to the fact
that in these models it is assumed that the population can adjust instantly to the current
density conditions i. e. there is no time-lag in the negative feedback mechanism, an

assumption that might not hold for many biological populations. Continuous time models
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can, however, be modified such that the current rates of reproduction are determined by the
density conditions that existed T time units in the past. With this type of time delay, we find
more complex behavior like cycles in continuous time models (Cushing, 1977; Nisbet and
Gurney, 1982; Renshaw, 1991, pp. 88-93; Hastings, 1997, pg. 92). The discrete time models,
in fact, have these types of time delays built into them since reproduction is determined by
the density of progeny produced one time unit ago.
Chaos

The next important question we tackle is how does one characterize chaotic population
dynamics? The very word “chaos” would appear to suggest a lack of any structure, and this
is true to some extent. For instance, the population size variation produced by a chaotic
population superficially appears similar to random noise. Yet, there is often a precise set of
deterministic equations that drive the dynamics of chaotic populations and the behavior of
these equations is not random. One of the hallmarks of chaotic dynamics is extreme
sensitivity to initial conditions, implying that the trajectories of two populations that initially
start very close to each other will, over time, diverge and become increasingly different.
From this definition it is clear that two trajectories that start from different points can not
intersect each other if their dynamics are chaotic otherwise from the time of intersection the
paths would be identical. With discreet time models two different trajectories may cross but
never intersect each other. With the simple continuous time models considered here it is
impossible for two continuous trajectories to cross paths without intersecting at one time
point. For this reason it is more difficult for continuous differential equations to show
chaotic behavior. In fact continuous nonlinear equations do not exhibit chaos until there are

at least three or more independent variables (species, genotypes etc.). Discrete time models
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are not so constrained and may exhibit chaos in one dimension (if the nonlinear function is
not invertible, two dimensions otherwise).

The study of nonlinear systems that give rise to chaos has also identified some unifying
processes at work. Assume there is a single variable that determines the stability of a non-
linear equation, such as the logistic. Let 71 be the value of that parameter where the stable
point equilibrium bifurcates to a period-2 equilibrium. Likewise, 72 is the parameter value at
which the two-point cycle gives way to a four-point cycle and so on. We then define delta #
as the ratio,

. h— Tl

h .
M=

The Feigenbaum delta is then defined as, n—"% 500 =4.66920161.. This result is
independent of the particular nonlinear function that gives rise to these cycles. In physical
systems where the O, can be reasonably estimated, there is general agreement with the
Feigenbaum delta. This result suggests a unifying structure to period doubling phenomena.
Consequently, there is probably little practical application of the Feigenbaum delta to
problems in ecology. For most biological populations it is extremely difficult to determine
the precise conditions where a two-point cycle would give way to a four point cycle for
instance and therefore to empirically estimate 7,

The stability of nonlinear models will be determined by a combination of one or more
parameters that we may call the control parameters. As the value of the control parameter
varies the behavior of the model may change until it exhibits chaos. There are a variety of
routes to chaos that different models may display (Hilborn, 1994). In ecological models three
routes have been seen, (i) period doubling, (ii) quasi-periodicity, and (iii) intermittency

(Ruxton and Rohani, 1998). We have already discussed the period doubling route. This is
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one of the most common routes to chaos in ecological models. Quasi-periodicity refers to
periodic oscillations that are influenced by two or more periods for which the ratio of the
two frequencies is not a rational number. This gives rise to population trajectories which
look as though they repeat but in fact do not. As the control parameter is varied the system
moves from this quasi-periodic behavior to chaos. The presence of multiple frequency
oscillations can be detected by the use of time series analysis (reviewed in chapter 3). Several
host parasite models exhibit this form of chaos (Rohani et al., 1994; Rohani and Miramontes,
1995). Finally intermittency refers to trajectories that show irregularly occurring periods of
chaos separated by durations of periodic behavior. As the control parameter is varied the
relative duration of the chaotic episodes becomes longer until the behaviour is always
chaotic, with no intervening durations of periodic dynamics. Such dynamic behavior has
been observed in models with two genotypes with different population dynamic parameters
(Doebeli, 1994) and host parasite models in which the host has three different phenotypic
classes (Cavalieri and Kogak, 1995). We next review one of the characteristic indicators of
chaos.

Having discussed the various routes to chaos, we next review one of the characteristic
indicators of chaos. Suppose our population dynamic equation predicts a series of
population sizes (an orbit) that look like, No, N1, ..., N,. If we started at a slightly different
point, say No + o, would the trajectories depart from the previous orbit or stay close to it?
We can answer this question by looking at the product of the partial derivatives evaluated at

the original orbit, in a manner similar to our previous stability analysis as follows,

Y = g(l)(Nk)g(l)(Nk—1)---g(l)(No)YO = [g(l)(No)]k+1yo~
Whether, the initial perturbation, jo, is growing or shrinking can be assessed by looking at,

170471/ po|. Formally, the determination of chaotic dynamics will rest on evaluating the

L.D. Mueller & A. Joshi 2-19



Stability in Model Populations Theory of Population Stability

Lyapunov exponents (Ott, 1993; Ellner and Turchin, 1995). For the first order difference
equations discussed so far there will only be one Lyapunov exponent, although for higher
dimensional systems the number of Lupanov exponents may be as high as the
dimensionality of the system. Since the value of the initial perturbation is arbitrary, let us
assume that j0 = 1 for the following example. The Lyapunov exponent, »(INo) is then

defined as,

Iim%ln(‘yk‘) = Iim%ln(‘[g(l)(No)]k‘).

k — o k— o

Lyapunov exponents that are positive will characterize chaotic systems. That implies that the
geometric mean of the first derivatives in equation (2.15) is greater than 1 and thus the
perturbation from Np is growing. There are several methods for numerically estimating
Lyapunov exponents. We have used one method described by Ott (1993) to estimate the
Lyapunov exponents for the linear logistic (2.1) and exponential (2.3) models as a function
of a1 (fig. 2.4), and the results emphasizes the point that even when the linear logistic and
exponential models are producing cycles, the Lyapunov exponent will be negative if these

cycles are stable.
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SECOND AND HIGHER ORDER MODELS

This chapter started out with the simplest formulation of the discrete time models, one
that assumed that population size depends only on the size of the population in the very last
generation or time interval. Models that depend on the most recent population size are
called first order. If population size depends on two previous population sizes it is second
order and so on. There are several important biological phenomena that will cause current
population size to depend on population size in several previous generations. Here we
consider two such phenomena, age-structure and dependence of adult fertility on pre-adult

density. In theory, these phenomena may have an important impact on population stability.
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FIGURE 2.4. The Lyapunov exponent for the linear (2.1) and exponential (2.3) models of
population growth as a function of the parameter a;. The values for a, were taken from the LH;
population in Table 2.2. Each estimated Lyapunov exponent was based on the population sizes
following from Ng = 650, and y, = 1. A total of nine new generations of population sizes would be
generated and yqy estimated from (2.15). The first estimated Lyapunov exponent was then taken
as h; = y¢/10, yy was then set back to 1 and the process was repeated, now starting at Nig. The
final estimate of the Lyapunov exponent was based on the average of 1000 sequential values of
h;.
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More importantly, if observations are made on populations where these phenomena are
important, failing to take this into account may give misleading inferences about the stability
of populations. We develop these ideas by first discussing populations with age-structure.
Age-Structure

If adults survive from one time interval to the next and remain capable of reproduction,
then we are dealing with an age-structured adult population and this increases the complexity
of any model attempting to capture the dynamics of such a population. To illustrate just
some of the problems generated by age-structure, we consider a very simple model. We
assume two adult age classes with population sizes N,, N,. Individuals of both age-classes
are assumed to be capable of reproduction. If the total adult population size is N, (=N,, +
N,), age-class transitions are given by,

Nl,t+l = Nt(a‘l "’ath)’
N2,t+l :le,t'

Thus, the number entering the first age-class depends on the previous total adult population
size in a density-dependent fashion. Survivorship from the first adult age-class to the second
is density-independent and is determined by the survivorship probability, 4. To emphasize
the dependence on population sizes for more than one generation the recursion for N,

can be rewritten as,
Ny = (Nl,t + le,t—l)(al +a,N; + aZle,t—l) .

When 4 = 0, (2.16) reduces to the linear logistic model (2.1). The equilibrium adult

population sizes for (2.16) are,

-~ 1-a,(1+b)

Ne= avn)?
2

N, =bN,.
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The general method for the analysis of the stability of systems of difference equations is
shown in box C. For the model (2.16) we have ascertained the stability determining
eigenvalue for a range of 4 values, using a1 and a2 values from the LH; population in Table

2.2 (fig. 5).

(2.19)

Stability Analysis for Systems of Nonlinear Equations: We consider vector valued population

size data (e g. age-classes) with N, = (N1, Ny, ... ,Ng)', where the superscript T denotes a matrix
transpose and d is the total number of different age-classes. The transition of this vector from

one time interval to the next is governed by,

Nl,t+1 = gl(Nt)’
N2,t+l = gZ(Nt)’

Nd,t+1 =0y (Nt)'

A

A~ A~ T
We assume there is an equilibrium for this system given by, N = (Nl,..., Nd) . The stability of
this equilibrium will be determined by the dxd, Jacobian matrix (J), which contains the first

derivatives of the functions in (2.19) evaluated at the equilibrium N , that is,

dg, (N) dg, (N)
dN, dN,
J =
dg, (N) dg, (N)
dN, dN,

The system’s stability will depend on the modulus of the largest eigenvalue, |A*| of J. For real

eigenvalues the modulus is just the absolute value. For complex eigenvalues (a + bi) the

modulus is equal to, va?+b? . i [A*| < 1 then the equilibrium, N , is stable. The eigenvalues of
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J are found by solving the equation, det(J — Al) = 0, where “det” stands for the determinant of a

matrix.
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FIGURE 2.5. The modulus of the largest eigenvalue for the model (2.16). The values for a; and
a, are taken from fitting the linear model (2.1) to data from the LH; population (Table 2.2). The
value of the adult survival parameter b is allowed to vary. When b = 0 the eigenvalue is the same
as in Table 2.2 (-1.06). For b > 0 there is a shaded region where the equilibrium (2.18) is stable.
Thus, the addition of age-structure can make a population that is in a two-point cycle settle down
to a single equilibrium point if there is moderate survival from the first age-class to the second.

The example in figure 2.5 shows that age-structure may, under some circumstances,
stabilize a cycling population. Interestingly, in this example, stability of a single point
equilibrium is consistent with intermediate values of survival from the first age-class to the
second. Clearly, age-structure is an important detail that needs to be taken into account in
empirically assessing the stability of a population’s dynamics. Our qualitative view of
population stability may be substantially altered when age-structure is included in population

dynamics models. It has however, been more difficult to draw any specific conclusion about
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the effects of age-structure on population stability that would apply across a broad spectrum
of biologically relevant situations. For instance Guckenheimer et al. (1977) conclude that,
“A general ‘rule of thumb’ appears to be that as the dimensionality of the system increases
the amount of nonlinearity required to produce complex behavior decreases.”. In contrast,
Charlesworth (1994) provides evidence supporting the notion that age-structured
populations are more likely to exhibit stable behavior. However, Charlesworth also noted
that as the pre-reproductive period lengthens this stabilizing effect of age-structure declines.
Swick’s (1981) position is intermediate, maintaining that age-structure will make it less likely
to observe higher-order cycles or chaos, but perhaps more likely to induce simple cycles.

All said, it is clear that when one is assessing data from real populations, attention must
be paid to the issue of age-structure. For example, suppose a population has age-structure of
the sort described by equations (2.16), and estimates of total population size at different
times are collected from this population and used to evaluate the dynamics of the
population. If the population is treated as if it did not have age-structure will the correct
conclusion regarding population stability still be reached?

To address this question we simulated a series of 20 generations of population growth
for the model with two age-classes (2.106), adding environmental noise to each adult age class
in a manner following Dennis et al. (1995),

In[NlM] =In[N, (a, +a,N,)]+ &,

|n[|\|2m] = |n[bNM]+ &y
The €., were uncorrelated, and was each normally distributed with mean zero and variance
0.0025. The resulting total population sizes are shown in figure 2.6 for three different
values of 21 with @ and 4 being held constant. Next we applied one of several methods for

estimating population stability (reviewed in chapter 3) to this simulated data set, assuming
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that a particular model describes the population dynamics of this system. Estimates of the
model parameters were then made from the observed population size variation. These
estimates were then in turn used to estimate the stability determining eigenvalue. This
eigenvalue may give rise to misleading conclusions about population stability if either the
parameter estimates are poor, or the original model does not adequately describe the

dynamics of the population.

850

a, =3.15& 3.155

800

750

Population Size

650
2 4 6 8 10 12 14 16 18 20

Generation

FIGURE 2.6. Simulated growth of an age-structured population. Adult population (N + Ny) size
from equations (20) are shown for three different values of a;. The two curves for a; = 3.15 and
3.155 are very close to each other over all 20 generations of data. The same set of random
variables, €, was used in each of the three simulations. For each simulation a, = -0.00312 and b
=0.43.

We took the data shown in figure 2.6 and used maximum likelihood techniques to
estimate the parameters of model (2.17) by letting N1, = N, These estimates were made
separately under two different assumptions. In the first case, we assumed the dynamics were
tirst order, so N,,, depends only on N, and therefore b = 0. In the second case we assumed

the dynamics were second order and estimated 4 directly from the observations. Note that
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this second order model is still different than (2.16) since we are only modeling changes in
total population size. We assume that the different age-classes are indistinguishable. Using
the estimated parameters, we then obtained an estimated eigenvalue and compared it to the

true eigenvalue of the deterministic system (2.16). These results are shown in table 2.3.

TABLE 2.3. Results of the analysis of the population data in figure 2.6. The three curves in figure

2.6 were analyzed assuming a first order difference equation (Nt = Nt_l(al +a, Nt_l)) and a

second order difference equation(Nt = (Nt_l +bN,, )(a1 +a,N,, +a,bN,, )) model. The

first five rows show the parameter values used to generate the results in figure 2.6. The last five
rows show estimates obtained for each of the two models. The actual eigenvalues (bold) for the
deterministic model generating these data are shown along with the estimated eigenvalue (bold)
derived from the maximum likelihood estimates of the model parameters (indicated by the hats
u/\u).

First Order Second Order
a - - - 3.1 3.15 3.155
True a - - - -0.00312  -0.00312  -0.00312
values b - - - 0.43 0.43 0.43
A - - - 0.85 0.993 1.005
o2 - - - 0.0025 0.0025 0.0025
a, 3.07 3.07 3.08 2.906 2919 2.926

Estimated 4, -0.00271 -0.00265 -0.00266  -0.00225 -0.00222  -0.00224
values p O 0 0 0.207 0.206 0.189

2 107 1.07 1.08 0.987 1.0012 1.011

&% 0.00055  0.00059  0.00054 0.000455 0.000463  0.000472

When @ is 3.1, the true stability determining eigenvalue has modulus 0.85 (in fact the
eigenvalue is complex), and thus the system approaches a stable point. However, when the

data are analyzed assuming a first order difference equation (e. g. assuming / = 0) the

L.D. Mueller & A. Joshi 2-27



Stability in Model Populations Theory of Population Stability

estimated eigenvalue suggests the equilibrium point will be unstable. The second order
model (table 2.3) does a much better job at estimating the sign and magnitude of the
eigenvalue. Of course, we have considered only three examples in table 2.3, and to reach a
more general result would require a systematic and detailed examination of the two different
estimation schemes used in table 2.3. However, these limited results clearly show that there
is certainly no reason to suppose that ignoring the additional time dependence created by
age-structure is valid.

Dennis and Taper (1994) hold out the hope that it may still be possible to model
population dynamics or some index of population size by simple first order equations under
appropriate conditions. As an example of this Livdahl and Sugihara (1984) describe a
method for estimating population growth rates from cohort data in age-structured
populations. Their index is a function of female survivorship to reproductive age, the size of
females and the relationship between size and female fecundity. Their method would
typically apply only to growth rates for populations at a stable-age distribution and in
populations with high juvenile mortality, negligible adult mortality and female fecundity that
varies with adult size but not age. Similarly, Barlow’s (1992) method for estimating
population growth requires a stable size distribution. Barlow’s index assumes fecundity
depends on adult size, and adult mortality to be age-independent.

In variable environments or especially in populations that are cycling or chaotic, the
assumptions of stable-age or size distributions required by Livdahl, Sugihara, and Barlow are
dubious. Likewise the assumptions about age-specific survival would limit the species and
populations that these techniques could be used with. The point we wish to stress is that the
effects of age-structure on population dynamics must be considered carefully when trying to

analyze data from populations in nature.
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Pre-Adult Density Affects Adult Reproduction

Even populations that have fully discrete generations and no age-structure may not be
properly modeled by first order difference equations if there are particular kinds of
interactions between different life stages. Prout and McChesney (1985) were the first to
study this issue systematically and we will briefly discuss some of the kinds of problems that
such interactions between life stages may cause in analyzing population dynamic data based
on censusing only a single life stage. We will return to this issue in detail in parts of the
following chapters when we discuss specific model systems. For the present discussion we
will focus on the kind of general life cycle considered by Prout and McChesney.

For this type of population, which we illustrate in figure 2.7, a model of egg dynamics is,

n., = F(n,)G(n)n,.

However, if the census stage are adults, N, (= G(n)n,= H(n,)) then the recursion can only be
reconstructed if the function H(n) is invertible. For a variety of species, empirical
observations suggest that this function will be humped and, consequently, not invertible
(Prout and McChesney, 1985). We have reproduced one set of empirical data collected by
Rodriguez (1989) for Drosophila melanogaster (tig. 2.8). 1f a census of this Drosophila population
showed 150 adults there are two possible egg densities (IN;, INy) which could each give rise

to this number of adults. Adults raised at a larval density of N; would be expected to be

eggs  larvalsurvival — adults [nG(n,] €ggs next generation
n, G(n) nG(nJF(n)
000 - = TE¥ 000
— — >
000 = TEY egg production 000
Fin)

FIGURE 2.7. A discrete life cycle with two density-dependent life stages, larval survival and
female fecundity. Fecundity is assumed to be a function of the degree of larval crowding.
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FIGURE 2.8. The relationship between egg numbers and adult numbers within one generation
for D. melanogaster (from Rodriguez, 1989). The solid curved line is an exponential model that
has been fit to these data. An adult population of 150 may have arisen from either an initial batch
of N, eggs or Ny eggs. The relationship between egg number and adult numbers is not one to
one.

larger than adults raised at the larval density IN;. Since larger females lay more eggs these
differences in size have important consequences for rates of population growth.

In these cases,
Net = G(ny)ne, = G[F(n)N JF()N,.
However, 7, depends on #,, and N,, and so on. For many organisms, the adults are the most
conspicuous and easily sampled. Consequently, when adult numbers are counted, but their
fertility is a function of their pre-adult densities, then the recursion in adult numbers will
depend on many previous adult densities in a rather complicated fashion. If the underlying
stability of a population can not be determined from the numbers of adults alone, then

population studies will be complicated. Although, in principle, the adult population size may
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depend on many previous population sizes, practically it may be possible to get reliable
estimates of population stability by examining only a few previous population sizes.

We examine this problem by investigating one model considered by Prout and
McChesney (1985). The combination of a linear survival function and exponential fertility
yields,

(2.24) n., =3 Fexp(-fn,)(S —sn)n,,
where §'is the maximum larval survival rate at low density, s reflects sensitivity of survival to
larval crowding, F is the maximum fecundity at low density and fmeasures the sensitivity of
female fecundity to crowding. We have used the parameter estimates for these functions
obtained by Prout and McChesney for D. melanogaster, and estimated an equilibrium egg
number (1758) and stability determining eigenvalue (-1.25). We have used (2.24) to simulate
100 generations of adult population sizes with random noise (fig. 2.9).

The adult data in figure 2.9 have been used to estimate the parameters of linear logistic
model (2.1) and the second order linear model,

(2.25) Nt = Nt—l(al +a, Nt—l) + Nt—2 (bl + bz Nt—z)-

The equilibrium of equation (2.25) is, N = (l—al —bl)(a2 +b2)7l. The stability of this

equilibrium can be assessed by the method described in box D.
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(2.26)

Stability Analysis for a kth order Nonlinear Difference Equation: We consider a recursion for

population size in which the present population size depends on the previous k-values of the

population size,
Nt = H(Nt—l' Nt—2"" Nt—k)'
Equation (2.26) can be solved for a point equilibrium by setting N, = N, ;, =.= N, , = N. The

stability of this equilibrium point can be evaluated by using Taylor's series to approximate N + &

as,
R N dH (- dH(:
N+ég=N+g, 0 +..+E 0
dNt—l N, ;=N dNt—k N, =N
dH (-
If we let @, = N 0) , then the perturbations to the equilibrium grow according to the linear-
N =N
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FIGURE 2.9. Simulated adult and egg numbers, from model (2.24) with random environmental
noise. The parameter estimates come from Prout and McChesney (1985) and were: 0.845 (S),
0.00028 (s), 16.429 (F), 0.001 (f).
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homogeneous difference equation,

& = Q& T O E
The stability determining eigenvalue is the largest among the possibly k-distinct solutions (A4,
A2,.., Ax) of the polynomial (Goldberg, 1958, pgs. 169-171), g —(olgk_l — =@ e—¢, =0.

For the second-order linear model, (2.25) the coefficients of the stability determining quadratic

equation are,

2a2 (1_ a, — bl)

A=t a, +h, '
2b2 (1_3-1 _bl)
¢, =Dy + a,+b,

The maximum likelihood estimates of the adult data in figure 2.9 were obtained for both
models (2.1) and (2.25). The eigenvalue for the first order model is -0.73. Thus, with this
model the analysis of the adult data suggests the population should be stable. Results, from
the second order model are quite different. The largest eigenvalue for model (2.25) is 1.29.
In this case the inclusion of an additional generation of adult numbers permits the correct
evaluation of this population’s stability. This simple example suggests that when analyzing
the stability of populations, even for those with fully discrete generations, the details of
density-dependence effects on various life stages can be critical.

EVOLUTION OF POPULATION STABILITY

The analysis of the simple population dynamic models has revealed the dependence of
population stability on various parameters that affect the density-dependent rates of
population growth. MacArthur and Wilson (1967) made the first serious attack on the
problem of the evolution of population growth characteristics with the articulation of the
theory of ~ and K-selection. There has been substantial progress in theoretical and

experimental research in density-dependent natural selection since MacArthur and Wilson’s
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initial development of the ideas of 7~ and K-selection (see Mueller, 1997 for a recent review).
These ideas have suggested that evolution may mold the rates of population growth.
Biological populations harbor genetic variation for traits affecting the value of population
growth parameters that, in turn, can affect population stability (Mueller and Ayala, 1981c).
Clearly, it is plausible to investigate the possibility that density-dependent natural selection
may also mold population stability just as it may mold population growth rates (Mueller and
Ayala, 1981a; Mueller et al., 1991).

Doebeli and de Jong (1999) point out that population stability is enhanced when genetic
polymorphisms exist for certain population dynamic parameters. Under this theory, stability
is a by-product of genetic variability rather than a result of directional increases or decreases
in life-history parameters that accompany natural selection.

In our view population stability is more likely to be a by-product of individual life history
traits that are directly connected to genotypic fitness. Thus, natural selection may affect the
evolution of fecundity and this evolution may reflect the genetic correlations between
fecundity and other life-history traits. A direct consequence of the evolution of female
fecundity may be changes in population stability. This view contrasts with others that view
the dynamical properties of a population as a trait that evolution may mold directly. For
instance, Ferriere and Fox (1995) speak about adaptive chaos and suggest that “chaos may
be an easy way to generate variability and uncertainty”’. This suggests that a by-product of
population dynamics is what drives evolution, whereas we feel that it is the fitness related
traits of individuals that are the focus of evolution, and that stability characteristics may end
up being molded indirectly by such evolution. We now review the theory which has been

developed in this general area.
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Theories of the evolution of population stability have involved explanations based on
both individual and group selection mechanisms. The arguments based on group selection
are that unstable populations will more often have their population size reduced to small
numbers (Thomas et al, 1980; Berryman and Millstein, 1989). During such a valley in
population size, extinction may occur, perhaps partly due to enhanced susceptibility to
environmental variation. To the extent that a species consists of many such populations that
are essentially genetically isolated (otherwise there will be no between population genetic
variation), then the environments that remain after population extinction may be recolonized
by some neighboring population that is presumably more persistent. In the absence of
empirical data supporting the special population structure needed to make this process work
it is difficult to take the group selection arguments very seriously. It is also reasonable to
assume that environmental rather than genetic differences may often be largely responsible
for the relatively unstable dynamics some particular populations. In such cases,
recolonization of a habitat patch following extinction may not necessarily represent any
evolutionary change, being no more than an expression of migration of individuals from a
habitat patch with an environment supporting relatively stable dynamics.

Allen et al. (1993) have stood this argument about instability enhancing extinction risk
on its head, by considering extinction or persistence of sets of populations. They argue that
if we consider a species consisting of many populations linked by low levels of migration the
chance of the species becoming extinct is reduced by chaos. This conclusion hinges on the
notion that chaos will produce uncorrelated variation in neighboring populations. Global
noise, like weather, will produce correlated variation among the subpopulations, local
environmental noise will be uncorrelated among subpopulations. Allen et al. suggest that

chaos amplifies the heterogeneity of the local populations and thus reduce the likelihood of
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species wide extinction. However, in the absence of this local environmental variation chaos
does result in increased local and species wide extinction rates.

On the other hand there are related explanations for the evolution of population stability
which may be more plausible. For instance populations which do undergo repeated
bottlenecks due to population size fluctuation may experience increased levels of inbreeding.
In outbred, highly fecund species inbreeding may substantially reduce fecundity. Since
population stability is often affected by maximum rates of population growth, which in turn
depend on fecundity, inbreeding may indeed lead to enhanced stability for certain species.
However, we expect this type of stability enhancement to be short lived if there is
immigration from neighboring populations with high fitness, outbred individuals.

The basic theory of density-dependent natural selection (Roughgarden, 1971) used the

standard form of model (2.1) to describe population growth,

N,
Ny =N 1+r1- K )

If genetic variation affects genotypic specific values of r and K then in constant
environments the outcome of selection depends on the relative population density. When
population size is high, selection favors those genotypes with the highest K. If the
population is kept at very low densities then selection favors the genotypes with the highest
values of r. It is a small step to move from evolution of population growth rates to the
evolution of population stability. Heckel and Roughgarden (1980) made this step by first
suggesting that selection would favor reduced values of r in environments where K varied.
This conclusion follows from the idea developed by Gillespie (1974) that natural selection
will favor a reduction in the variance in fitness. By decreasing 7 in variable environments,

populations near their carrying capacity may achieve a reduction in the variance in fitness.
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Thus, for model (2.27) the results of Heckel and Roughgarden suggest natural selection in a
variable environment will tend to increase the deterministic stability of the equilibrium.

Turelli and Petry (1980) considered a class of models that had the general form,
0

N, = NtG[(Nt /K) ]
where the function G(.) assumed either a linear, exponential or hyperbolic form. The
parameter O has provided a better description of population dynamic observations for some
organisms and there appears to be genetic variation that affects it’s value (Mueller and Ayala,
1981c). Their models permitted environmental variation to affect the carrying capacity or
density independent growth rates (by multiplying G(.) by 1 + g, where z, has mean zero and
variance 6%). They found that when the parameter ris allowed to evolve in these equations

stability may increase, decrease or be unaffected. However, when 0 was allowed to evolve
more consistent results were observed and selection often resulted in population stability.
Turelli and Petry (1980) dealt with populations that initially had parameter values which
produced stable dynamics. Mueller and Ayala (1981b), Stokes et al. (1988) and Gatto (1993)
have examined the evolution of stability in populations initially at a stable cycle or chaos.
Typically for these models to cause populations to evolve stable dynamics some type of
trade-off is required in parameters of the population dynamic models. For instance, Mueller
and Ayala (1981b) show that populations may evolve from a two point cycle to a stable point
if density-dependent viability trades-off with fecundity. Thus, under these models there exist
genotypes with increased viability but decreased fecundity. Nevertheless, these genotypes
have sufficiently high fitness that they can replace the resident genotype responsible for the
two-point cycle. Of course, this sort of genotype might be favored even if the population

wasn’t cycling. However, in most simple ecological models, the highest density in a two-
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point cycle will exceed the carrying capacity and thus the strength of density-dependent
selection will change. The decrease in fecundity that ensues ultimately stabilizes the
population. Gatto (1993) also described conditions under which populations may evolve
into chaos. However, fairly special combinations of life history parameters or special
population structure (Gomulkiewicz et al., 1999) are required for the evolution of chaos.

Hansen (1992) has suggested that the model dependence of these results may be due to
the manner in which the models are constructed. In some cases, like model (2.27) the
parameter that controls stability (7) is different than the parameter under direct selection at
high density (K). In other models this separation is not present. Hansen suggests that
selection at low densities will typically favor instability while the opposite will be the case at
high density.

The theoretical debate over the evolution of population stability has been aired recently
(Ferriere and Fox, 1995; Dobeli and Koella, 1996; Fox, 1996). Ferriere and Fox have argued
that, in principle, natural selection can favor the evolution of chaotic dynamics in
populations, and this possibility needs to be considered seriously. Dobeli and Koella (1995)
suggest their own modeling efforts support the notion that selection is more likely to favor
the evolution of stable rather than chaotic dynamics. The theories of Ferriere and Fox (1995)
and Dobeli and Koella (1995) have not really clarified any of the issues raised in the previous
theory considered. For instance neither consider more than one functional form of
population dynamics, despite Turelli and Petry’s (1980) demonstration of model sensitivity.
Special assumptions about the relationship of population parameters are ultimately critical to
the evolution of stability in both models (Ferriere and Fox 1995; Dobeli and Koella 1995).

A major difficulty with assessing the various predictions of these models is that they

depend on assumptions that can only be evaluated from empirical studies. For example, it is

L.D. Mueller & A. Joshi 2-38



Stability in Model Populations Theory of Population Stability

not clear as to what extent pre-adult survival and fecundity are correlated, or whether one
can alter O without changing 7 or K? Some of these issues could be more reasonably assessed
if the population dynamic models incorporated specific details of important life history
events of organisms (Christiansen, 1984). An important theme in our chapters on model
systems will be the use of models that specifically incorporate important life history
phenomena such as cannibalism in T7ibolium or scramble competition for food in Drosophila.
These models are to some extent less general than some of the simple models discussed in
this chapter, but are far more useful for the evaluation and design of experiments to critically

assess predictions from theory.
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CHAPTER THREE

Techniques for Assessing Population Stability

In this chapter, we take up the question of how we can apply the techniques for
determining the stability of models, reviewed in chapter 2, to data from real populations?
There are several approaches to this problem each with differing strengths and weaknesses.
One technique attempts to estimate linear population dynamics in the vicinity of an
equilibrium directly from observations of population growth rates. This approach is
obviously motivated from the mathematical definitions of stability reviewed in chapter 2.
Other techniques for assessing stability are based on evaluating the time-dependent behavior
of population growth and using these results to infer the deterministic behavior of the
population. This last technique utilizes the tools of time series analysis.

There are no formal distinctions between techniques that can be used with laboratory
populations and those which can be used with natural populations. However, we typically
have much more information about the factors controlling population growth in laboratory
populations. Consequently, techniques based on specific models are more often applied to
laboratory populations than natural populations. Nevertheless, we find some techniques,
like time series analysis, are used with both laboratory and natural populations. Certain
techniques are useful for distinguishing chaos from other dynamics but do not permit us to
dissect stable points from stable cycles, while other techniques do not specifically identify
chaotic dynamics but do differentiate a single stable point from other types of dynamical
behavior. While many techniques focus on the stability of the deterministic growth process,
others yield stability estimates for the deterministic and stochastic components of population

growth.
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LINEARIZED POPULATION DYNAMICS IN THE VICINITY OF AN
EQUILIBRIUM

We saw in chapter 2 that a Taylor series could be used to provide a linear approximation
to the dynamics of a population in the vicinity of an equilibrium point. In principle if one
could collect empirical estimates of rates of population growth in the vicinity of the carrying
capacity, these could be used to estimate the linear dynamics directly. The potential
advantage to this technique is that one doesn’t have to assume that any particular non-linear
model appropriately describes the processes underlying the growth of the population being
studied. For laboratory populations the population growth rates may be collected by
propetly designed experiments over a single generation. Observations collected in this
fashion and their stability estimates can then be compared to the time dependent behavior of
independent populations maintained over many generations. There are several drawbacks to
this technique. For most populations except those in the laboratory, it will probably be
impossible to collect observations of density-dependent rates of population growth around
the carrying capacity. There is also the difficult question of practically defining the region
about the carrying capacity in which dynamics are expected to be approximately linear. If
one chooses a range of densities that are too close to each other, then it may be impossible
to get an accurate estimate of the slope of the linear dynamics, due to experimental error. If,
however, the range of densities chosen is too large then the dynamics are unlikely to be
linear.

To our knowledge, this technique has been used only once (Mueller and Ayala, 1981b),
on laboratory populations maintained by a technique called the serial transfer system (Ayala,
19652).  This technique maintains an adult breeding population with overlapping

generations. Since it is a fairly complicated technique and has been used in several other
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Adults which have emerged during the last
time interval are transferred to a fresh culture

The oldest culture is
«— discarded after adults
are collected at time t

T Eggs laid in the culture at time
Thisis afresh 1 t-2 t3 t4
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newly added

adults at time t

N= 94(N..,) +g,(N..) +95(N.s) +g(N..,)

FIGURE 3.1. The serial transfer system, used to maintain populations of Drosophila with
overlapping generations (after Mueller and Ayala, 1981c). The entire population consists of four
cultures which have had eggs laid at different times. At regular intervals, usually one week, adults
are collected from all four cultures making up the population (cultures with arrows above show
movement of adults). These adults are added to a fresh culture, where they will lay eggs for the
next week, while the oldest culture is discarded. In principle there is a different nonlinear function
for each culture, gi(Ny;) describing the number of adults that emerge as a function of the number of
adults which laid eggs in that culture i-weeks ago.

studies that will be discussed later, we have outlined the basic steps of the serial transfer
system here (fig. 3.1). An adult census is made at regular intervals, usually one week, and
age-class numbers are unknown. The total number of adults at the census, N, is composed
of surviving adults from the previous week, g1(IN,,), and adults who have emerged over the
last week from bottles which are 2 (2(N,), 3 (@(N,;), and 4- weeks old (a(IN,y))
respectively (fig. 3.1). The number of cultures maintained may be different than four
depending on the species of Drosgphila used.

The model shown in figure 3.1 presumes that recruitment from old cultures is

dominated by the density of adults that originally laid eggs in that culture and is essentially
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FIGURE 3.2. Two populations of Drosophila melanogaster maintained in continuous culture by
the serial transfer system. Each population was initially started with 100 adults. The black line is
population-8 and the gray line, population-14 previously studied by Mueller and Ayala (1981b).
Each population had been made homozygous for a whole second chromosome sampled from
nature. Using data after the fifth week, the average size of population-8 is 912 + 72 (95%
confidence interval) and the average size of population-14 is 1032 + 80. These data are also
given in table 3.1A of the appendix.

independent of the age-structure of the population. Justification for this untested
assumption is that in standard laboratory populations the average life span is short (probably
two-weeks or less), and larval mortality is high due to severe crowding and over production
of eggs. Thus, even though newly emerged adults will lay eggs in their larval habitat (e. g. the
cultures labeled #2, ~3 and #4 in figure 3.1), these eggs will almost never successfully
develop and emerge before the culture is discarded. Adult population size variation for two
populations maintained by the serial transfer system for 38 weeks is shown in figure 3.2.
Rates of population growth at any desired density can be estimated for the serial transfer
system using single generation experiments. These single generation experiments place

adults at the specified density, N*, in a single bottle for one week. At the end of the week all
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the survivors are counted and this provides an estimate of gi(IN*). The number of emerging
adults from this same bottle are counted one week later and provide an estimate of g2(IN*).
Emerging adults are collected and counted at weekly intervals for the next two weeks,
providing estimates of g3(IN*) and g(IN*). This type of experiment can be repeated at the
same density multiple times and over a large range of densities. For the two populations in
figure 3.2 stability estimates were made from observations of survival and progeny
production with IN* at 750 and 1000 adults for populations 8 and 14. These two densities
were chosen because they were thought to bracket the carrying capacities of the populations.
That appears to have been a good assumption for population-8 but slightly off for
population-14.  Nevertheless, from these single generation experiments we can derive
estimates of the carrying capacity for populations-8 and -14 that are independent of the
observations in figure 3.2 (the raw data from the single generation experiments for
populations-8 and -14 are in table 3.2A). These estimates predicted the carrying capacity for
population-8 was 880 and for population-14, 990 (Mueller and Ayala, 1981c). Both of these
estimates are well within the confidence intervals for the continuously cultured populations
in figure 3.2. It is heartening that the single generation experiments are capable of
reasonably predicting the equilibrium population size of the continuously cultured
population. Additional details of these experimental protocols are discussed in Mueller and
Ayala (1981c) and Prout and McChesney (1985).

From the single-generation experiments a linear model approximates the nonlinear

functions in figure 3.1, @;(N,) = a, +a; N,. The resulting model for N, is a fourth-order,

linear nonhomogeneous equation and its eigenvalues are determined by methods described

in box A below.
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Stability of the Serial Transfer System: when the functions in figure 3.1 are linear, the
population growth model is, N,=A+a;N,,+a,N,,+a;N, ;+a,N,,, where

A= Za"i . The stability determining eigenvalues for this fourth-order, non-homogeneous,
1

difference equation, are the roots of the polynomial, &* — allg3 -4, g - a,;e—a;, =0. Using

the six independent observations of survivorship and progeny production at two densities for
population-8, given in the appendix (table 3.2A), the estimates of the four coefficients, a;i, ai»,
a3, and a4 are -0.476, 0.265, -0.122 and -0.0827 respectively. The roots of the polynomial, in
order of their magnitude are, -0.83, 0.36 + 0.39i, 0.36 - 0.39i, and -0.36. These results may be
obtained numerically from either commercially available software like Mathcad or Mathematica or
numerical routines like Laguerre’'s method (Press et al., 1986) can be used. Thus, population-8
should have a stable equilibrium, although the approach to equilibrium will be oscillatory.
Depending on the initial conditions the linear dynamics will be affected by all four eigenvalues,
with the largest dominating asymptotically. The negative and complex eigenvalues will contribute
to the oscillatory approach to equilibrium. If we let Az and A4 be the real eigenvalues and the
eigenvlaues which form a complex conjugate be a * bi, the general solution to the non-
homogenous linear equation above will be,

N, = C,r' cos(td+C,) +C,A,' +C, AL + N,

~

where the C;'s are constants determined from initial conditions, N is a particular solution to the
non-homogeneous equation, r is the modulus of the complex eigenvalues and 6 is the solution of
sin(0) = b/r and cos(0) = a/r (Goldberg, 1958, pgs. 163-164). Thus, the cosine function
contributes to the oscillatory approach to the equilibrium with a frequency 6. For population-8, 6
= 0.825 radians (or 0.13 cycles). For population-14 the polynomial coefficients, a;;, a;», a3, and
a4 are 0.23, -0.41, 0.0027 and 0.33 respectively. The roots in order of magnitude are, 0.075 +
0.89i, 0.075 - 0.89i, 0.68, and -0.60. The largest eigenvalue is complex with a modulus of 0.89.
Thus, the equilibrium of population-14 should also be stable although the approach to equilibrium

will be oscillatory with a frequency due to the complex roots of 1.49 radians (0.236 cycles).
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The largest eigenvalues derived here are slightly smaller than the values reported in Mueller
and Ayala (1981b) as a result of a different estimation procedure. Mueller and Ayala used the
jackknife technique and obtained values of 0.96 and 0.93 for the modulus of population-8 and
population-14's largest eigenvalue respectively. The jackknife technique is a numerically
intensive technique related to the bootstrap that can potentially reduce bias (Miller, 1974; Efron
and Tibrashini, 1993). The difference in estimates observed here is a reflection of this bias. In
practice we would recommend using either the jackknife or the bootstrap to estimate the largest
eigenvalue. These procedures can be used to reduce bias and construct confidence intervals

around the final estimates.

Although Mueller and Ayala (1981b) appear to be the only ones to have used this
linearization procedure to estimate population stability, several other studies have used rates
of population growth from the serial transfer system to study population stability and other
problems (Thomas et al., 1980; Hastings et al., 1981; Pillippi et al, 1987). In these studies
population growth rates were empirically determined using the single generation experiments
previously described. However, these studies assumed that population dynamics in the serial
transfer system could be described by a first-order difference equation,

N, =h(N, ).
Then the function A(IN,) was estimated from the single-generation experiments described

carlier by letting, h(N") = Z g;(N”). This summation is sometimes called the total
i

productivity, since it represents the sum of all survivors and progeny. This model ignores
the complicated time-dependence of egg laying in the serial transfer system and would not be
expected to yield estimates of growth rates that are relevant to populations maintained by the
serial transfer technique. In fact it is not clear if there is any population whose growth rates

are estimated by A(IN¥).
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MODEL BASED ESTIMATES OF STABILITY

The technique that we consider next is based on the use of specific non-linear models to
infer stability. We will separately consider two major variations of this technique. The first
variation assumes that a particular model provides a proper description of population
dynamics for a given system, and then uses observations from populations are to estimate
the model parameters. The second variation presumes ignorance of the appropriate model
and uses the observations from biological populations to both determine the best model and
estimate it’s parameters.

In both cases, once a population model is chosen and its parameters estimated then
stability of the resulting equilibria can be determined either by the techniques outlined in
chapter 2 or by numerical techniques. Usually, numerical techniques will be used when the
model is sufficiently complicated to defy simple analysis of the equilibria. The advantage of
the first approach is that the observations from the populations of interest are used only to
provide estimates of model parameters. The uncertainty in these estimates can be readily
estimated and thus the uncertainty in the final conclusions is readily quantified. Of course
the reliability of this method is directly related to the strength of support for the original
model being a good descriptor of the dynamics of the system under study. Except for
laboratory populations there will be few populations where great certainty about the
appropriate growth model exists. For most populations the observations will be used to
both determine the best model and estimate stability.

Models Chosen a-priori

The first serious attempt to assess the stability characteristics of natural populations was

a survey of published data by Hassell et al. (1976). In this study stability was assessed

through the magnitude of the parameters of a single population growth model,
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N, = AN (1+aN,)”.
For this model, the equilibrium population size is given by,

exp[ln(/l) ,6"1] -1
3 ,

N =
and the stability determining eigenvalue is,

1- ﬂexp[ln(l)ﬂ‘l]l‘l’ﬂ.
Hassell et al., use a variety of ad hoc techniques to estimate the parameters of equation (3.1).

For instance observations of maximum female fecundity were used to determine A. The rate

of population growth, according to (3.1), should be equal to A at low density. However, the
very rough motivation for the use of (3.1) with these data make it unlikely that fecundity data

will provide accurate estimates of growth rates (A) at low density. Hassell et al. also use a log
transformation of (3.1) so that linear regression techniques may be used to estimate 3. This

procedure will not yield the same estimate of 3 as nonlinear regression on the untransformed
data. Finally, the qualitative assessment of stability may depend critically on the precise
model used. Morris (1990), who also reanalyzed some of the data in Hassell et al, made this
last point. Morris showed that the use of standard non-linear regression techniques and
different growth rate models significantly affect the results of this type of analysis.

Rodriguez (1989) took a substantially different approach to the analysis of population
stability. Rodriguez studied laboratory populations of Drosophila melanogaster, kept on a fully
discrete regime of reproduction without age-structure. The life cycle was separated into pre-
adult survival and female fecundity. Survival (I7(#)) was assumed to be a function of egg
density (#) while female fecundity was a function of both egg density and adult density

(R(N,, n)) (see chapter 6 for more details). Rodriguez then estimated the parameters of the
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survival portions of this model from direct experiments in which eggs were crowded at
different densities and the number of survivors counted. In a similar fashion separate
experiments were used to estimate the fecundity of females raised at different egg densities
and cultured at different adult densities. The resulting model of egg density (7,) dynamics
can be written as,

n,=n_V(n_)sR(N,,n_,),
where egg-to-adult survival is modeled by an exponential function,

V(n,)=exp(S—sn,),
temale fecundity, which is a function egg and adult density (IN), is given by,

R(N,n,) =exp(F - f,N, - f,n,),
and adult numbers are, N, = nV (n,). The stability determining eigenvalue of (3.2) is given
by,

A=1-sfi— [ f,exp(S - si)(L—sh) + f,],
where N is the equilibrium egg number obtained from equation (3.2). The parameter
estimates were substituted into equation (3.3) and yielded 0.064 as an estimate of the stability
determining eigenvalue suggesting a stable equilibrium with a smooth approach to
equilibrium. In arriving at this result Rodriguez used only observations from parts of the life
cycle. These parts were then reconstituted through equation (3.2) to complete an entire
generation. 'This approach to estimating population dynamics is similar to the analysis of
fitness components in population genetics (Prout 1965, 1971a,b).

Rodriguez also collected nine generations of total egg numbers from 25 replicate

populations, but did not use them for parameter estimation. However, Turchin (1991) did

use these data to estimate population dynamic parameters. Turchin used a general first order
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difference equation that we describe in more detail in the next section. The stability
determining eigenvalue was -0.59 for this model. Time series analysis of Rodriguez’s data
suggested a possible damped oscillation towards an equilibrium point. The eigenvalue
obtained by Turchin is consistent with this result. However, is Turchin’s result at odds with
the eigenvalue estimated by Rodriguez?

The difference between the results of Turchin and Rodriquez could be due to (i) the
different models used in the analysis, (i) the different data used to estimate parameters, or
(iii) both of these factors. The second choice is probably important because the technique
employed by Rodriguez makes some assumptions that may be violated in the running
populations analyzed by Turchin. For instance the larval and adult density effects on
fecundity are assumed by Rodriguez to act independently. It may not be the case that the
effects of 500 small adults on female fecundity are the same as 500 large adults in which case
this independence assumption will be violated. Secondly, the collection of data on life cycle
components by Rodriguez differed in some small but possibly significant ways from the
conditions in which the running populations were maintained. For instance, the effects of
adult crowding on female fecundity were measured in 6-dram vials while the running
populations were maintained in 8-dram vials. Taken separately, these factors may have been
small but together their effects could be enough to account for the quantitative differences
observed in the estimated eigenvalue.

It is also plausible that a confidence interval on the eigenvalue estimated by Rodriguez
would include negative values. There are several possible ways to place a confidence interval
on the eigenvalue given by (3.3). One simple method that utilizes a Taylor series

approximation is called the delta method (Kendall and Stewart, 1969). Applying the delta

method to the estimated value of (3.3) suggests the 95% confidence interval is, 0.064 £ 0.18
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(see box B). Consequently, the results of Rodriguez are not inconsistent with a negative

eigenvalue.

(3.4)

(3.5)

(3.6)

Delta Method: the basic problem is to estimate the variance of a complicated function of a

random variable or vector. Suppose we need to estimate the quantity M, which is a complicated

function of k parameters, cy, Cy, ..., C, €. g. M = F(cy,Cp,., C). We assume that we can obtain

estimates of the parameters, €,,C,, etc. These in turn are used to estimate M so,

|\7| = F(Cl,(f2 ,-~,Ck). The function F() can be approximated by a Taylor series by expanding

the function around the expected value of the parameters,

~ . dF . dF
M = F[E(c,). E(c,) E(@)]+ (6, — E@) g bt + (6 ~ E(C) gl e
1 k

A~ A 2
Noting that Var(M) = E[(M—F[E(Cl),--,E(Ck)]) ] we get the following estimate of

variance,
dFY’ dF dF
Var(C)| —| + Cov(¢,,C.)——.
In practice we replace E(C;) with €, when we finally estimate Var( M ). We now apply this

technique to the eigenvalue, in equation (3.3). The two experiments used to estimate S and s
were different from those used to estimate f; and f,. The estimates of S and s were consequently

independent of f; and f,. Applying (3.5) to (3.3) results in,

Var (1) =Var(S)g? +Var(8)g? +Var(f,)¢2 +Var(f,)e?
+2Cov(S8) i, + 2Cov(f, f,) e,

where,
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dA - 2
¢ = F —Af, (11— 8A) exp(S — 8n),

==+ 7 exp(S - $)(2 - $1),
dA 2
4 = — = —fexp($ — §A)(L— ),
df,
_d4_
¢4 - dfz -

We have used the data in figures 2 and 5 of Rodriguez (1989) and non-linear regression
techniques (Gallant, 1975) to estimate the covariance term for the survival model (COV(§§) ) and
the variances and covariances for the fecundity model (Var( fl), Var( fA2 ), and Cov( fA1 fAz) ) with
the results that Var(f,)=686x107° Var(f,)=325x10",Cov($§) =159 x 10°, and

Cov( fA1 fAZ) =-1.3 x 10°. The other terms in (3.6) are given in Rodriguez and they are, Var(S) =
0.00139 and Var(s) = 3.6 x 10®°. The parameter estimates were f; = 0.1125, f, = 0.000855, S = -
0.5106, s = 0.001335. The estimate of the variance of A obtained by substituting these values

into (3.6) is 0.00808. The confidence interval is derived assuming that the estimated eigenvalue

is normally distributed, e.g. 1.96 times the square root of the variance.

As a last example we consider several papers which have used different models to
estimate the stability of populations of D. melanogaster maintained by the serial transfer system
(Thomas et al., 1980; Mueller and Ayala, 1981b; Hastings et al., 1981; Philippi et al., 1987).
As discussed eatlier, several studies have assumed that the serial transfer system can be
modeled by a first order difference equation. When this is done the net productivity statistic
(which is the productivity minus the starting density) dramatically overestimates growth rates
at low density. For instance, when productivity is used to estimate growth rates for
population-8 and -14 in figure 3.2 and the results are fit to the logistic equation, the estimates

of rare 14.0 and 15.0 respectively. Thus, the stability determining eigenvalues are 13 and 14

L.D. Mueller & A. Joshi 3-13



3.7)

Stability in Model Populations Techniques for Assessing Population Stability

(compare to the direct estimates of the eigenvalues in box A). This would suggest chaotic
population dynamics, a conclusion that is not supported or remotely suggested by any other
analysis of these data. Nevertheless, Hastings et al. (1981) developed a boundary layer model
of population dynamics that would produce very high growth rates at low density but still
exhibit stable dynamics about the carrying capacity. In effect the model of Hastings et al.
was motivated by an incorrect analysis of the experimental data rather than a novel biological
phenomena. In these examples, the problems with the analysis are not with the specific
models chosen but with the techniques used to estimate population growth rates from
experimental observations.

There are several other studies which use specific models to estimate stability, especially
for laboratory populations of blowflies (Stokes et al., 1988) and T7ibolinm (Costantino and
Desharnais, 1991; Costantino et al., 1997; Dennis et al., 1995). We discuss these studies in
more detail in chapters 4 and 5 respectively.

Models Estimated from Data

For many populations, especially natural populations, the most appropriate model of
population dynamics is often unknown. In such cases one can use observations on
population size variation over time to estimate the best population dynamic model. The
techniques we describe here are all different variants of regression analysis. Below we will
describe several techniques for objectively choosing the best model. Once the model has
been chosen and its parameters estimated the stability of the population may be inferred
from the same sort of techniques used previously.

Turchin (Turchin, 1990; Turchin and Taylor, 1992; Ellner and Turchin, 1995) has used a

technique called the response surface method (RSM). The general form of the model is,

log(N, / N.;) = P,(N&, N%, .. . N, ) +e,,
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where P, is a polynomial of degree ¢ and 0 are set to a range of values (e. g. to -1, -0.5, 0,
0.5,...,3), ¢, are exogenous factors, like weather etc., and 4 is called the embedding dimension
and as discussed in chapter 2 depends on factors like age-structure and life stage interactions.
Expressed this way standard linear regression techniques may be used to estimate the
parameters of (3.7). For instance, when analyzing the Drosophila data collected by Rodriguez,
the embedding dimension is 1 since there was no age-structure and egg numbers were
counted, consequently the model,
log(N, /N, ,)=a, +a,N/,,

was used. Turchin’s estimate of stability was unaffected by making the polynomial second
order.

A difficult question that must be answered when applying (3.7) is what value should &
and g be? The answer to these questions will be guided by the general rules of variable
selection in regression analysis. If one simply looks at the proportion of the total variance
explained by the regression model, R?, this quantity will typically increase with increasing &
and ¢. In the limit one can derive an #th order polynomial which will pass through all #+1
points in the regression. This interpolating polynomial will typically give poor estimates of
future observations. As with many estimation problems, the selection of the “best”
regression model involves weighing trade-offs between variance and bias (see box C below).
Several techniques have been proposed to aid in evaluating different regression models that
we review briefly in box C. These techniques all attempt to achieve a balance between
models which increase the congruity between observations and predictions and the

complexity of the model.
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Variable selection in regression models: for the discussion that follows we will change our

notation so that the results can be presented in a more general setting. Suppose we have n-
observations of a dependent variable, y; (i = 1,..., n), that are linear functions of k-independent
variables, X1, X,, ..., Xx and have a common variance c°. For population growth models y; might
be the population size at some time, t, and the xj's might be previous population sizes or

populations sizes squared etc. Thus, the model for the ith observation is,

Yi = BX + 5X, +- 4 B X,
For the entire set of data the model may be written in matrix notation as,

Y =XB,
where Y is a n x 1 vector of observations, X is the n x k design matrix and B is the n x 1
parameter vector which we will estimate by least squares techniques. The least-squares
estimate of g is given by,

A -1

B=(X"X)" XY,
where T denotes a matrix transpose. The covariance of B is given by,

A -1

Cov(B) =(X"X) " o”.
Suppose we assume that the last k-p parameters are zero, e.g. By« = ..= Bk = 0. Under this
assumption let 3 be the least squares estimate of B. It turns out that the variance of predictions

based on the more complicated model is greater than the variance of predictions based on the

A

simpler model. In other words the model predictions using B has greater variance than
predictions based on E (Walls and Weeks, 1969),

Var(L"B) = Var(."B),
where X is a vector of the independent variables. Of course if the last k-p parameters are not

zero then B will be biased. Hence, the practical problem is deciding when to stop adding
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parameters to the model because the reduction in bias does not compensate for the increased
prediction variance.

One way to incorporate the joint properties of bias and variance of an estimator is through the
mean squared error that equals the variance plus the bias squared. One method for variable

selection proposed by Mallows (1973) is to choose parameters which minimize the mean

squared error of the predictor variables YAI Let the residual sum of squares (RSS) for the p-

RSS

~2
(o2

parameter model be, Z (Y, - YAI )? , then Mallows c, is defined as, L [n -2(p+ 1)]. The

model with the smallest value of ¢, would be selected. The variance, &7, is estimated from the
full model with all k parameters as, RSS,/(n-k).

The statistic called prediction sum of squares or PRESS is based on the ability of the
regression model to accurately predict new observations (Allen, 1971). PRESS is a form of cross

validation computed by deleting the ith observation from the data set and then using the

remaining n-1 data points to estimate, B_;. PRESS is then computed as,
1 A 72
A\

where Y_, is the prediction based on the estimates, 3 ;.

Ellner and Turchin (1995) proposed another cross validation statistic,

{ RSS }2
V., = .
n— pc

In their study Ellner and Turchin set c = 2.

We next apply the response surface method to the Drosophila population data in figure
3.2. We have fit these data to first, second and third order models. All models include a

single constant term. Two regression parameters for each embedding dimension were
estimated for the independent variables N and N??. Separate models with 0 set to -1.5, -

1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were examined. For each model we estimated 172,
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C, and PRESS to aid in the evaluation of the best model. PRESS was computed by
numerically removing one observation at a time and estimating the regression coefficients on
the remaining data. This must be done carefully since the deletion of a single observation in

the time series often affects several results. For instance when fitting a third order model,
when N, is deleted one can no longer predict, N,,,, N,,, and N,,;. Since the models with 6 >

1.5 uniformly performed poortly these results are not shown in table 3.1.
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TABLE 3.1. Results of the response surface method on the two populations of Drosophila. The
minimum value for each statistic is shown in bold.

Population-8 Population-14
Model/0 12 G, PRESS 2 G, PRESS
First-order
-1.5 0.036 74 3.0 0.017 69 1.4
-1.0 0.033 69 0.86 0.015 62 0.37
-0.5 0.015 36 0.79 0.0069 34 0.31
0 0.015 37 0.35 0.0089 42 0.17
0.5 0.017 41 0.20 0.0091 43 0.13
1.0 0.035 73 0.17 0.024 88 0.14
1.5 0.049 92 0.19 0.032 105 0.15
Second-order
-1.5 0.031 58 4.9 0.0057 24 1.7
-1.0 0.024 48 1.1 0.0048 20 0.41
-0.5 0.0064 13 4.0 0.0023 7.0 0.11
0 0.0079 17 0.72 0.0024 7.3 0.078
0.5 0.0071 15 0.15 0.0025 7.8 0.089
1.0 0.039 67 0.18 0.033 90 0.18
1.5 0.062 92 0.19 0.040 101 0.15
Third-Order
-1.5 0.0068 12 0.41 0.0051 17 1.1
-1.0 0.0074 13 0.20 0.0053 18 0.24
-0.5 0.0056 9.0 1.3 0.0036 12 0.81
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0 0.0059 9.8 0.28 0.0037 12 0.13
0.5 0.0066 11 0.16 0.0047 16 0.11
1.0 0.024 39 0.14 0.0063 21 0.098
1.5 0.048 63 0.14 0.0085 28 0.064

The performance of 12 and C, are very similar with these data because they both depend
on the residual sum of squares. On the other hand for these populations PRESS suggests
the best model is different than the best model identified by 12 and €, We have next
determined the largest eigenvalue for the range of models that received support by any of the
selection statistics.

TABLE 3.2. The largest eigenvalue (or modulus in the case of complex numbers) for several
RSM models and two populations of Drosophila.

Model/0 Population-8 Population-14

Second-Order

-0.5 - 0.77
0 - 0.75
Third-order

-0.5 0.74 -

0 -0.60 0.75
0.5 -0.63 0.69
1.0 0.69%* 0.63

*Complex eigenvalue
- not one of the best models

In all cases the different models predicted a stable point equilibrium. In this regard the
results in table 3.2 are also consistent with the stability estimates from the single generation

experiments in box A. In the case of population-14 the numerical estimate of the largest
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eigenvalue was also consistent between models. However, for population-8 the largest
eigenvalue was positive, negative or complex depending on the model used. Obviously for
these regression techniques to be useful it is important that their qualitative predictions of
stability do not change radically as the model structure is changed slightly. There has not
been much research on this particular problem and a more systematic exploration of the
RSM techniques than the work in table 3.2 ought to be pursued.

TIME SERIES ANALYSIS

Even populations that are governed by simple models of density-dependent growth will
vary over time due to random phenomena. If the expected value of the population size is
independent of time then the stochastic process is stationary. The deterministic component
of these types of stochastic processes can be inferred from time-series analysis.

Turchin (Turchin, 1990; Turchin and Taylor, 1992) has been responsible for the most
recent use of time-series for the elucidation of population stability (for general reviews of
applications to population dynamics see Royama, 1991). As a tool in ecology, time series has
been used much earlier to look at the cyclic nature of the predator-prey cycles (Moran,
1953), as well as to model population dynamics in variable environments (Roughgarden,
1975). Turchin and Taylor describe several general patterns for the autocorrelation function

(box D) which are expected under different types of population regulation models.

Time Series, the Autocorrelation and Spectral Density Functions: a statistical time series

may be a continuous or discrete time varying function, x(t), which is subject to random variation
(Jenkins and Watts, 1968). Observations made at different times are generally not independent
of each other but may be related by some linear or nonlinear function. When the underlying
process which controls the time series reaches an equilibrium or steady state the process is

stationary. The value of x(t) will not depend on the absolute time for a stationary process. Most
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of the techniques and analysis of time series require the assumption of stationarity. An
informative property of a time series is the autocorrelation function, py(k). The autocorrelation
function defines the correlation between observations separated by k-time units (often k is
referred to as the lag). For a stationary process the autocorrelation functions depends only on
the time separating the observations not the absolute time. We define the autocorrelation

function as,

o (K) = Cov(x(t), x(t - k)) |

Oy t) Ox(t-k)

where oy is the standard deviation of the random variable at time t. The stationarity assumption

leads to the natural conclusion that o) = oy« = o, and therefore,

o (K) = Cov(x(ti: 2x(t -k)) |

For finite data sets the number of observations available to estimate the autocorrelations
decrease with increasing k. Suppose population sizes are estimated for 10 generations yielding
N1, Na, ..., Njg. From these observations there are only 2 pairs of points to estimate p(8) (N1, Ng
and N,, Njg) but nine pairs to estimate p(1). For this reason the most accurate estimates of
autocorrelations will be those at the small lags.

The autocorrelation is one technique for studying time-series and is usually referred to as an
analysis of the time-domain. The variance of a time-series can be decomposed into sine and
cosine waves of different frequencies. These techniques are called analyses in the frequency
domain. The spectral density function describes the relative contribution to the total variance of
periodic functions with different frequencies. Random variables that are uncorrelated over time
have roughly equal contributions to their variance from periodic functions of all frequencies. In
this sense these random variables resemble white light which results from mixing light of many
wavelengths. Consequently, these types of random variables are sometimes called white noise.
Some time-series may have strong periodic components and these will show up as a peak in the
spectral density function. For time series with observations made at M regular time intervals the

highest frequency that can be detected are signals with periods of two time units or frequencies
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of 0.5 cycles per time unit. Higher frequency oscillations will simply be undetectable because the
signal may undergo several unobservable cycles between sample points. The lowest frequency
will be oscillations with periods equal to M or frequencies of M™ cycles per time interval. Again
lower frequency oscillations could not be detected since the sample size is not sufficient to
observe at least one complete cycle. The techniques for estimating the spectral density functions
are somewhat complicated (see Jenkins Watts, 1968, chapter 6 for details) and typically utilize
certain smoothing functions which attempt to balance the joint problems of bias and variance.
These smoothing functions or windows can reduce the variance of the estimator considerably by

using many adjacent estimates of spectral density but this process also introduces bias.

In chapter 2 the departures from an equilibrium, €, for the discrete time models were
represented as a first order autoregressive process,
& = A,
where 4 is the first derivative of the density-regulating function evaluated at the equilibrium

point. If we assume the mean of €, is zero and the variance is 62 then,

Cov(ge.)  Elag.) E(@“s &) _ a‘o’

(k) = =a
p, (k) o2 o2 o2 o2

k

Populations with positive eigenvalues (0 < « <1) produce positive autocorrelations which
geometrically decline as observations get further apart (fig. 3.3). This result says that
observations that are closest tend to be similar in value, and as more distant observations are
compared the resemblance of the two observations becomes weaker. With negative
eigenvalues (-1 < @ < 0) the sign of the correlation changes with each lag. Thus, the
correlation is negative with odd lags and positive with even lags and all correlations decline
in magnitude with increasing lags (fig. 3.3). This type of behavior is generated by the

oscillatory approach to the equilibrium.
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FIGURE 3.3. The autocorrelation and spectral density function for a first order autoregressive
process. For a stable population with positive eigenvalues the autocorrelations are always
positive and decrease with increasing lag. For stable populations with negative eigenvalues the
autocorrelations are negative for odd lags and positive for even lags and decrease in magnitude
with increasing lag. Populations with positive eigenvalues exhibit most of their variation in the low
frequency part of the spectrum while the populations with negative eigenvalues are dominated by
high frequency variation.

With a little more work we can also derive the expression for the spectral density

function for the first-order autoregressive process (Jenkins and Watts, 1968, pg. 228) as,

2
(o2

1+a” —2acos(2af)’

L(f)=

where 62 is the variance of the random noise and fis the frequency. For positive values of &
(the stability determining eigenvalue), the spectrum is dominated by low frequency signals
(tig. 3.3) while for negative values of 4, the spectrum is dominated by high frequency
components.

We next consider populations in a stable cycle. Suppose the population is at a stable 2-

A

point cycle with equilibrium points, N;, N,. Population sizes separated by an even number
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FIGURE 3.4. The autocorrelation function and spectral density estimated from the adult data in
figure 2.9. These data were in a two-point cycle with a relatively small amount of noise added to
each generations population size. Population sizes separated by an even number of generations
(lags) are close to the same equilibrium point (either the valley or the peak) and thus show strong
positive correlations. Population sizes separated by an odd number of generations are at
opposite positions (one at a peak the other at the valley) and thus show a strong negative
correlation. The spectral density is dominated by the high frequency oscillations.

of time units will be close to the same equilibrium point and thus positively correlated with
each other, while the population sizes separated by odd numbers of time units will be at the
alternate equilibria and thus negatively correlated. The magnitude of these correlations
should also get weaker with increasing lag due to multiple time intervals of intervening
random noise. To illustrate this the autocorrelation function for the adult data in figure 2.9
are shown below (fig. 3.4). In this example the relatively small amount of environmental
noise results in a very slow decay in the magnitude of the correlation function with time. If
there were no environmental noise then the correlation would be 1.0 for all even lags and -

1.0 for all odd lags.
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These techniques are next applied to the Drosophila data analyzed previously (fig. 3.5).
These results show that neither population appears to be in a two-point cycle nor in a simple
oscillatory approach to equilibrium. In fact the patterns are most similar to the stable
equilibrium with a positive eigenvalue except for the peaks in the spectral density function
which suggest middle range oscillations. These periodicities may in fact be due to the
complex eigenvalues which will create an oscillatory approach to equilibrium as outlined in
Box A. The arrows show the predicted frequencies of these oscillations that are reasonably
close to the observed peaks. The difference between the observed and predicted frequency
peak is greater for population-14. This may be due to the use of densities that did not
bracket the carrying capacity and hence provided less accurate information about the local

linear dynamics of population-14.
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FIGURE 3.5. The autocorrelation coefficient for the two populations of Drosophila shown in
figure 3.2. The data was first log transformed and then any linear trend was removed. In both
populations a strong positive correlation between neighboring observations rapidly decays to
zero as the observations become more distant but then become slightly negative. The spectral
density function for population-8 shows a peak around a frequency of 0.12-0.14. Population-14
shows a peak around 0.28-0.30. The arrows show the frequency of expected peaks from the
stability analysis (Box A).

CHAOS
The great attraction of chaos for population biologists is because data from real
populations often look more similar, at least superfically, to chaotic trajectories than to the
trajectories predicted by our simple models. There is little argument over the presence of

noise in natural populations (both environmental noise and noise in the estimates of
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population size) but it is important to know if most variation in population numbers is due
to these extrinsic sources of noise, or if the noise is internally generated by the density
regulating mechanisms. It will be important to keep in mind that the dynamics of all real
populations are stochastic. For that reason the dynamics of real populations can’t be chaotic
since chaos is a property of deterministic systems. Stochastic systems may have properties in
common with chaotic systems, like positive Lyapunov exponents, but it will be important to
keep separate the behavior of the stochastic system from that of the underlying deterministic
system.
Time Series

Recently, the patterns of spectral density functions have been used to assess the
likelihood of chaotic dynamics (Cohen, 1995). Since most long term records are for natural
populations an important component to this evaluation is some impression of the spectral
density functions due to random environmental variation. At first it might seem that most
environmental noise would be white. This would clearly depend to some extent on the
sampling period. Thus, local temperature will show strong correlations from one time point
to the next when sampled at 24 hours intervals. However, over yearly intervals the
correlation will be weak or zero. Steel (1985) presents data that suggest atmospheric
temperature shows white noise variation for short intervals of time up to about 50 years.
After 50 years there is an increasing contribution of periodic components with long
wavelengths or low frequencies. This increase in the spectral density at low frequencies is
sometimes referred to as a red spectrum, as an extension of the analogy to frequencies of
visible light. This pattern is even more pronounced in ocean temperatures that show a

spectral density that continuously increases in proportion to 1/frequency?.
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If these very long term environmental fluctuations forced ecological systems to jump
between alternative equilibria then the long term spectrum of population numbers would
also exhibit a red spectrum (Steel, 1985). The direct analysis of long time series of Chinese
locus (Sugihara, 1995) and indirect inferences from several other species (Pimm and
Redfearn, 1988; Arifio and Pimm, 1995) suggest that there may be significant redness in
these spectra. Cohen’s paper (1995) was seen as presenting a new ecological dilemma when
he noted that many simple population growth models yield significantly blue spectra under
conditions that produce chaotic dynamics. As we have seen in the previous sections,
populations in stable cycles or an oscillatory approach to equilibrium will also exhibit blue
spectra (assuming small levels of white noise). On the other hand populations with strong
stable equilibrium point will exhibit red spectra (again assuming low levels of environmental
white noise).

What should be made of Cohen’s observations? Sugihara (1995) suggests they raise the
specter of environmental determination of population patterns (red spectra) »s. population
regulation (blue spectra). We feel that the significance of these findings has been somewhat
overstated and the ultimate utility of time series spectra for evaluating the potential for chaos
in natural populations is weak. Several points need to be considered. The first is the utility of
the existing time series. The Chinese locust data is one of the longest spanning about 1000
years. While one can make out a slight increase in the magnitude of the spectrum at low
frequencies, it is not nearly as dramatic as similar data for physical factors like temperature.
One could imagine that these data may be subject to long term cycles in their quality. Thus,
due to political and financial resources the census data may be subject to periods of good
collection (in which a large fraction of the population is accounted for) and periods of poor

collection (where a much smaller fraction of the population is accounted for). This type of

L.D. Mueller & A. Joshi 3-29



Stability in Model Populations Techniques for Assessing Population Stability

fluctuating effort may resemble the ecological model developed by Steel (1985) that also gave
rise to a red spectrum. Currently it appears that only a small fraction of natural populations
can be classified as chaotic (see chapter 7). Other models of population dynamics can
produce red and white spectra (White et al, 1996). Thus, the observation of a red spectrum
may eliminate a certain class of chaotic models, but it is not strong evidence of the lack of
chaos and certainly not strong evidence for the primacy of environmental effects.

Detecting Chaos

Schaeffer (1984) examined the long term data on lynx skins shipped by the Hudson Bay
Company in Canada. In this study Schaeffer used three year running averages to construct a
third order model by the technique of cubic splines. From the resulting model he then
inspected the trajectories in three-dimensional figures to see if one could detect evidence for
folding and stretching of the trajectories. When trajectories fold and stretch they give rise to
the sensitive dependence on initial conditions, which is a hallmark of chaos. The qualitative
manner in which these techniques need to be applied limits their general utility.

Sugihara and May (1990) used a different approach to infer chaos. They noted that for
large time series (e.g. > 500 observations) that nonlinear models fit to these data typically did
well predicting future observations, at least for a dozen or so time intervals, unless the
trajectories were chaotic. The sensitivity of chaotic dynamics to initial conditions means that
predictive power will be lost quickly. Thus, in plots of the correlation coefficient between
predicted and observed population size us. the number of time intervals in the future,
Sugihara and May suggest that steadily declining correlations over about twelve time intervals
indicates chaotic dynamics. Sugihara and May conclude that the number of measles cases in

New York City and the number of diatoms off the pier in La Jolla are chaotic, while
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chickenpox cases in New York City are not chaotic. The practical limitation of these
techniques is the large samples needed.

Another very interesting procedure for detecting chaos has been described by Ellner and
Turchin (1995). The ultimate goal of this technique is to directly estimate the Lyapunov
exponent of the non-linear dynamical model. Chaotic populations will of course possess
positive Lyapunov exponents. These techniques appear to work well with modest size data
sets (~50 observations). Ellner and Turchin proposed estimating a population dynamic
model from the observations as described eatlier in this chapter. They relied on three
general models, the response surface, feedback neural networks and thin plate splines. Each
method uses very general nonlinear equations and no arguments from first principles favor
one method over the others. However, the response surface method will typically require
fewer parameters and will be particularly helpful for small data sets. In simulations Ellner
and Turchin found no substantial differences in the performance of each of these three
general models.

Ellner and Turchin suggest using the [ statistic to choose the best model. As we have
already seen for the Drosophila data analyzed in this chapter other criteria, like PRESS, will
not necessarily identify the same model as best. We suggest using a variety of techniques for
identifying the best model and if no single model “wins” determining the Lyapunov
exponent from the range of best models. We think this is a prudent method for several
reasons. Obviously, if different objective criteria can not distinguish among several models
they should all be examined. PRESS and 1> will help identify models which may provide
the best future predictions but that doesn’t necessarily mean they will provide the most
reliable estimates of the stability of the studied populations. For this reason it is worth while

to look at several models to insure that results are consistent. If the results are not
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consistent between models then the strength of our conclusions about the existence of chaos
will only be as strong as our belief that the chosen model is the proper one for the study
population.

Once a model is chosen then the Lyapunov exponent is estimated in a manner similar to
the technique used in chapter 2. We illustrate this with a second order model. The

extension to higher order models is straightforward. Suppose we have m-observations

labeled NO , Nl,..., N, ;. The model of population growth is,

Nt = g(Nt—l’ Nt—2)'
Let the vector N, be (IN, N, )T. Then equation (3.8) may be rewritten as,
(gl(Nt—l)] (Q(Nt_l,Nt_z)}
N, = = .
92(Nes) N,

We can then define the Jacobian matrix as,

dgl(Nt—l) dgl(Nt—l)
| Ny, NG g
I dg,(N,,) dg,(N,,)

i dN,_, N, dN,_, Res |

The estimated Lyapunov exponent is,

=—t 1o
“m-19

A

jm—ljm—z SVAY

b

where vI' = (1, 0). The double bars indicate any vector norm (see box E). In simulated
trajectories of 100 observations these techniques were very good at distinguishing chaotic
from non-chaotic dynamics. However, these simulations were on a limited set of models and

more work on these techniques if needed.
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Vector Norms: if v is an n-dimensional vector with real or complex elements, a vector norm will

have the following properties. (i) ||v]| > O, unless v = 0, (ii) if c is a scalar then ||cv|| = |c| ||v]|, (iii)
for any vectors v and u, |[v + u]| < ||v|| + |lyll- Condition (iii) is also known as the triangle

inequality. The Euclidean norm (or distance) is defined as,

Other commonly used norms include,

n
v, = Do,
i=1

\Y

n

2
vl = (fuf -+

V]|, = max ‘vi ‘ .
i

It is worth contrasting equation 3.9 to the technique used in figure 2.4 to estimate the
Lyapunov exponent. In figure 2.4 the deterministic model was iterated many times to
determine if nearby trajectories tend to diverge from each other. In equation 3.9 this
behavior is estimated along the actual orbit of the observed population sizes. These
observations cleatly consist of both the deterministic portion of population dynamics and
the random component. In fact we might view the observed population sizes as a realization
of the stationary distribution of the population size. For this reason the method developed
by Ellner and Turchin is in fact a stochastic estimate of stability (see chapter 1). Another
technique for estimating stochastic Lyapunov exponents has recently been described by
Dennis et al. (submitted). Their technique iterates a stochastic model of population dynamics
and is similar to the technique used in figure 2.4. The technique proposed by Dennis et al.
differs from Turchin and Ellner’s method in three ways. (1) Dennis et al. uses a mechanistic

based model fit to data whereas Ellner and Turchin use nonparametric models fit to data.

L.D. Mueller & A. Joshi 3-33



Stability in Model Populations Techniques for Assessing Population Stability

Dennis et al. applied their technique to experimental Tribolium data, for which there is a
good theoretical understanding of the growth model (see chapter five). In contrast Turchin
and Ellner apply their techniques to many natural populations where this level of
understanding is seldom found. (2) Dennis et al. iterates a stochastic model and evaluate
Jacobian products until convergence whereas Turchin and Ellner evaluate the Jacobians
using the observed data trajectory. This requires Dennis et al. to make some assumption
about the form of the random noise while Ellner and Turchin are using the observations as
an empirical estimate of that distribution. The consequences of assuming the wrong
distribution have not been studied yet. (3) Dennis et al. demonstrates a bootstrapping
technique to provide confidence intervals for the Lyapunov exponents and stochastic
Lyapunov exponents.

Dennis et al. (submitted) prefer to separately estimate the deterministic and stochastic
parts of a population’s dynamics. Dennis et al. reason that there is inherent interest in
determining to the extent to which a population’s overall behavior is a consequence of the
underlying biology that determines the nonlinear growth equations. For instance in the
experimental Tribolium systems studied by Dennis et al., they estimate that the deterministic
component of population dynamics explains 93% to 99% of the observed variability
depending on the life-stage examined. In all likelihood natural populations would have a
larger contribution from random forces.

On the other hand Dennis et al. note the potential for stochastic noise to have significant
impact on the final dynamics of populations. For instance noise may cause populations to
spend long periods of time near unstable equilibria or in cases where there are multiple
domains of attraction, noise may cause populations to bounce between these alternative

states.

L.D. Mueller & A. Joshi 3-34



Stability in Model Populations Techniques for Assessing Population Stability

In many ways the final description of population dynamics involves the consideration of
elements analogous to those that appear in descriptions of the evolution of populations:
natural selection and genetic drift. Evolution depends on both the deterministic force of
natural selection and the random force of genetic drift. We find situations where one or the
other force is likely to dominate evolution: drift dominates in small populations while
selection will control the fate novel beneficial traits (like antibiotic resistance in bacterial
populations) in large populations. Important synthetic theories of evolution emphasize the
joint role of both forces. Wright’s shifting balance theory of evolution utilizes the potential
of drift to place populations near different domains of attraction and thus “permit”
evolution to explore the adaptive landscape.

We think that just as evolutionary biology finds it useful to keep track of the stochastic
and deterministic forces separately, the discussion of population dynamics will also benefit
by separately evaluating the deterministic and stochastic components. There are several
reasons for adopting this approach. (1) In most experimental systems it is the deterministic
aspects of population dynamics that have been manipulated, although in the future we may
find experimental work that attempts to manipulate the random aspects of the environment.
(2) Evolution of life histories will affect the deterministic aspects of population dynamics. (3)
Detailed study of environmental variation, at least in natural populations, is likely to be
relevant only to specific geographic regions and only for specific periods of time. As a result
their detailed understanding will provide less general knowledge than we can derive through
an equivalent study of the deterministic aspects of population dynamics.

We already know from our analysis of the deterministic models that have been fit to the

Drosophila data (fig. 3.2) that the equilibrium points are stable (table 3.2). We may now use
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the method of Ellner and Turchin to determine if the stochastic Lyapunov exponent is
positive.

Table 3.3. The stochastic Lyapunov exponents for the Drosophila populations 8 and 14 shown in
figure 3.2. The second order models utilized in Table 3.1 were used with several different values
of 0.

0 Population Stochastic Lyapunov Exponent
-0.5 8 -0.49
14 -0.13
0 8 -0.09
14 -4.3
0.5 8 -0.52
14 -0.27

All stochastic Lyapunov exponents in table 3.3 are negative. Thus, even with environmental
noise, trajectories that start close by will stay close by each other.

Some time series data from natural populations are collected at monthly intervals rather
than yeatly. Samples collected this way may reflect seasonal variation in addition to other
sources of variation. Ellner and Turchin (1995) suggest that forcing the population dynamic
model to explain this regular source of variation can lead to spurious inferences of chaotic
dynamics. They suggest adding to the regression models the periodic parameters,
cos(2mt/12) and sin(2mt/12). Ellner and Turchin found that monthly records of measles
were weakly stable with the inclusion of the periodic function but chaotic without it. At this
time, the relative importance of chaos in the dynamics of natural populations is a topic on
continuing debate, and we shall return to this issue in our discussion of natural populations

in chapter 7.
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APPENDIX

TABLE 3.1A. Population size variation in the two populations of D. welanogaster graphed in

figure 3.2.

Week Population-8

Population-14

0 1N Ul B~ WD -
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100
92
364
727
422
1433
1082
1093
898
719
833
870
997
631
1405
906
961
1066
895
801
923
1002
963
1135
1186
800
808
845
741
867
504
820
428
862
974
1058
841
762

100
100
123
729
1201
891
968
1553
1261
1336
1391
1330
1157
1004
1393
838
1114
789
986
1074
1302
1309
1170
855
1065
794
1030
912
845
659
861
553
853
966
754
902
1062
1108
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TABLE 3.2A. The observed survivors (g1(IN*)) and emerging progeny (o2(IN*), g(IN*),

24(IN*)) from the single density experiments for populations-8 and -14 of D. melanogaster.

Population  Density (N¥) Replicate a(\¥) 2(\¥) 2(\¥) a(\¥)
Line 8 750 1 361 230 274 173
2 392 207 311 104
3 321 334 326 81
4 322 366 290 84
5 103 266 229 73
6 89 309 227 47
1000 1 191 436 298 63
2 108 315 238 62
3 138 304 201 94
Line 14 750 1 45 353 314 289
2 39 333 298 269
3 295 258 373 147
4 304 222 349 142
5 109 287 460 378
6 91 286 404 355
1000 1 308 197 447 260
2 139 160 322 408
3 167 206 332 367
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CHAPTER FOUR

Blowflies

In the 1950s, the Australian entomologist A.J. Nicholson did a series of experiments
aimed at studying the dynamics of laboratory populations of the Australian sheep blowfly
Lucilia - cuprina Wied. under various types of food regimes and demographic and

environmental perturbations (Nicholson, 1954a, b, 1957). These experiments were

conducted during the heyday of the debate, to which we alluded in Chapter 1, about the
importance of density-dependent versus density-independent mechanisms in population
regulation. Consequently, some of Nicholson’s concerns in his attempts to demonstrate
experimentally that populations were self-regulating and could compensate for various
perturbations to their numbers today seem a little anachronistic. Ironically, the regular cycles
in population numbers that Nicholson observed, and which have been a continuing focus of
attention and interest among population ecologists, were to him “only of secondary
importance”. Nevertheless, the data collected by Nicholson in the course of his experiments
have become well known as a text-book example of how populations can fluctuate violently
in numbers even in constant environments, and have motivated several modeling efforts in
more recent times (May, 1973; Brillinger ez a/., 1980; Gurney e/ a/., 1980; Nisbet and Gurney,
1982; Stokes ez al., 1998; Manly, 1990; Gutierrez, 1996). In this chapter, we will review some
of Nicholson’s experiments, concentrating on those results that shed some light on how
various density-dependent regulatory mechanisms can affect the stability of populations.
LIFE-HISTORY OF L. CUPRINA IN THE LABORATORY

In his experiments, Nicholson reared large populations of blowflies at 25°C in perspex

cages that could support adult populations of over 10,000 flies. Under these conditions, eggs

hatched in 12-24 hours, and the larval stage extended from 5-10 days, with the duration
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partly depending on larval density. The pupal stage took between 6-8 day. Young adults of
L. cuprina are not sexually mature untill about 4 days of adult age, and females may be ~ §
days old before they are able to lay any appreciable numbers of eggs. The adults could live
up to 35 days or so. Thus, the total development time, from egg to egg, in these populations
was about 20-22 days.

In these experiments, the laboratory populations of L. cuprina were subjected to two
major types of food regimes. In one food regime (henceforth referred to as HL: high food
levels for larvae, low food level for adults), larvae were given food well in excess of their
requirements, and adults did not have access to this food. The adults, on the other hand,
were supplied sugar and water to excess, but had their protein supply limited by adding only
0.5 g of ground liver each day to the culture. In L. cuprina, adult mortality levels and age-
dependent patterns are similar whether they are given sugar, water, and liver, or just sugar
and water. Life-span, however, can be considerably shortened by reducing the amount of
sugar supplied to adults. The requirement of adequate supplies of protein for adults is
important for female fecundity. If the protein intake of females is below a threshold level,
they lay no eggs and, in general, fecundity declines with decreasing protein intake. In the
other main food regime used (henceforth referred to as LH: low food levels for larvae, high
food level for adults), adults were given sugar, water, and liver well in excess of their
requirements, and larvae did not have access to this food. The larvae in this food regime
were provided only 50 g of food per day (25 g per day in some treatments), which would

give rise to severe scramble type larval competition for food.
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FIGURE 4.1. Larval density-dependent larval mortality in L. cuprina. Data points are means from
several independent replicate vials at each density. Survival untill eclosion is also partly
determined by pupal mortality, which is ~ 0.02, and independent of larval density (data from
Nicholson, 1954 b).

It is clear that major density-dependent effects in these populations were mediated
through food availability for larvae or adults, according to food regime. Both larval and adult
life-stages in L. cuprina were subject to density-dependent mortality. In larvae, there was
negligible mortality when excess food was provided; the density-dependence of mortality
was, thus, primarily due to density in terms of larvae per unit food. At densities of 5-10
larvae per g food, 80-90% of the larvae survived to eclose as adults. Survivorship untill
eclosion declined rapidly as larval density increased from 10-40 larvae per g, and was less
than 2% for densities greater than ~ 100 larvae per g (fig. 4.1). Survival of larvae untill
eclosion, of course, depends upon both larval and pupal mortality, but pupal mortality in L.

cuprina was not dependent upon larval density, and in Nicholson’s experiments it fluctuated
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erratically about a mean level of ~8%. Larval density also had an effect upon the size of
eclosing adults, with substantial reduction in adult size being observed even at larval densities
at which survivorship was not affected so markedly. Adult mortality in these populations
appeared to increase almost linearly with density, at least over the range of densities observed
in the course of Nicholson’s experiments (fig. 4.2). The mortality values in figure 4.2 are for
the fraction of adults dying over a two day period, and it can be seen that at densities above
6000 adults or so, the adult numbers within a cohort would fall quite drastically in just a few

days, lowering the mean life-span substantially.
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FIGURE 4.2. Adult density-dependent adult mortality in L. cuprina. Data points are means
averaged over 10-20 separate observations of the number of deaths during two day periods as a
fraction of the number of adults present at the beginning of those two days. The figure is
schematic, and depicts the average mortality over a density range. For example, mortality over
two-days at densities of ~1500-2500 adults would be ~30% (modified after figure 8.2 in Manly,
1990).
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Female fecundity in these populations was also adversely affected by increased adult
density, and this effect was heightened in the HL. food regime, where the supply of protein
to adults was limited (fig. 4.3). The pattern of sensitivity of fecundity to adult density in the
LH and HL food regimes depicted in figure 4.3 is for illustrative purposes only, and should
be interpreted qualitatively. The data to which the hyperbolic model of fecundity as a
function of density have been fitted are average daily fecundity and average adult population
size data from a number of treatments within both LH and HL regimes, in which varying
proportions of adults were culled by the experimenters. Thus, large fluctuations in adult
numbers, and in fecundity, have been subsumed into the mean values. Our main purpose
here, is simply to illustrate that, broadly speaking, fecundity declined with adult density in
both food regimes, but the sensitivity of this density-dependent response was markedly
reduced in the LH food regime. Female fecundity would also have been adversely affected
by high larval densities, due to reduction in adult size which was up to eightfold in these
experiments when larval densities were high. The effect of larval density on female fecundity
in the LH regime, however, was of far smaller magnitude than the effect due to adult density

in the HL. food regime (Nicholson, 1957).
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FIGURE 4.3. Idealized depiction of the sensitivity of female fecundity to adult density under the
LH (unlimited protein for adults) and HL (adult protein supply limited to 0.5 g liver per day) food
regimes. The figure shows best fit curves obtained by fitting a hyperbolic model of fecundity as a
function of density (F(Ny) = a/(1 + bNy) to data on mean numbers of eggs produced daily in
populations maintaining different mean densities (data from Nicholson, 1954 a).

Overall, it seems reasonable to conclude that adult-density-dependent fecundity and
larval density-dependent larval mortality are the main density-dependent regulatory
mechanisms in the HL. and LH food regimes, respectively (fig. 4.4). In the LH food regime,
moreover, inhibitory effects of both larval and adult density on female fecundity also
probably play a subsidiary role in generating some amount of negative feedback. Adult
density-dependent adult mortality is likely to be a minor contributor to density-dependent
regulation of population growth in both food regimes.

DYNAMICS OF L. CUPRINA POPULATIONS
In the experiments conducted by Nicholson, populations of L. cuprina were set up in

cages, typically established by seeding a cage with 1000 pupae, and then essentially allowed to
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maintain themselves for up to a year or more, with minimal disturbance other than the
imposition of an LLH or HL food regime. Data recording began a few weeks after initiating a
population, in order to avoid any transient dynamics. Daily records were kept of the number
of larvae, pupae, and living and dead adults. Some of the populations within each food
regime were also subjected to demographic perturbation by killing a fixed proportion of

eclosing adults each day, or to variations on the food regimes, which we will discuss later.
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FIGURE 4.4. Schematic depiction of the density-dependent regulatory mechanisms acting on
populations subjected to LH and HL food regimes. Thick gray arrows represent ontogenetic
transformations. Solid and dotted thin black arrows represent relatively strong and relatively weak
density-dependent feedback loops, respectively.

From the point of view of our interest in stability, the most important result from these
experiments was that fairly regular, large amplitude (3-4 orders of magnitude) oscillations in

adult numbers, with a periodicity of ~ 40 days, were seen in both HLL and LH food regimes,
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although the period appeared to be somewhat shorter in the LH food regimes (fig. 4.5). In
the HL. food regime, minima in adult numbers were as low as a few tens of adults, whereas
adult numbers at the maxima routinely exceeded 7000, going as high as 14000 in some
cycles. The magnitude of the maxima in numbers was clearly affected by the amount of food
provided to the larvae. In an LH food regime where larvae were limited to 50 g food per day,
observed maxima were in the range of 2000-3500 adults, whereas when larval food supply
was held at 25 g per day, the range of observed maxima was only 700-1500 adults. Although
the amplitude of the fluctuations was much reduced in the LH treatments where larval food
supply was limiting, the degree of instability of populations in the two food regimes was not
different, with coefficients of variation of adult numbers being ~1.0 in all three populations

shown in figure 4.5.
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FIGURE 4.5. Representative samples of a few cycles of time series data from three populations,
illustrating the regular fluctuations observed both LH and HL food regimes. Data from the initial
few weeks of each population would represent transient dynamics and have, therefore, been
omitted. Panel A data are from a population subjected to an HL food regime. Panels B and C
show data from populations in LH food regimes with larval food supply held at 50 g and 25 g per
day, respectively. Note the different scaling of the Y-axis in each panel. Horizontal gray bars
represent times that appreciable numbers of eggs were laid (in Panel A), or egg laying periods for
which the eggs laid actually gave rise to an appreciable number of eclosing adults (in Panels B,
C) (modified after Nicholson, 1954 b, 1957).
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In both LH and HL food regimes, appreciable recruitment into the adult stage only
resulted from eggs laid during troughs in adult numbers (fig. 4.5). In the HL food regime,
where protein supply to adults was limited, appreciable numbers of eggs were laid only when
adult numbers were very low, enabling at least some females to obtain enough protein for
sustaining egg laying. Larval mortality in this food regime was negligible, and pupal mortality
was not density-dependent. Consequently, the numbers of breeding adults recruited on any
day would be directly proportional to the number of eggs laid about 20 days before. In the
LH food regimes, adults were not limited by protein supply and, consequently, relatively free
from adult-density-dependent control on fecundity (fig. 4.3). As a result, large numbers of
eggs were laid each day, especially during periods of high adult density. However, at the
kinds of egg densities reached in the LH cultures (~ 175 larvae per g, on average), larval
mortality would be very excessive (~0.99: see fig. 4.1), except when relatively few adults were
laying eggs. Thus, even in the LH food regime, in which adults were not competing for
protein sources, significant recruitment into the pool of breeding adults would only occur
from a cohort of eggs laid when adult density was extremely low. In addition to the large and
regular fluctuations in adult numbers seen in these populations, there is also the somewhat
intriguing observation that the distribution of eggs laid during the period of low density, and
which result in significant adult recruitment, is bimodal in the LH food regime (broken grey
bars in panels B, C of fig. 4.5), whereas it is unimodal in the HL food regime (solid grey bars
in panel A of fig. 4.5). In fact, two distinct peaks in pupal numbers can be seen per cycle in
the LH food regime, but they appear at somewhat irregular intervals (data not shown). This
is a point that Nicholson did not address, although it has been examined by later workers,
and we will deal with it in the next section, after first discussing here the likely causes of the

gross features of the observed dynamics in the HLL. and LH food regimes.
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As noted by Nicholson, it appears that the fluctuations in adult numbers in these
populations were caused by a combination of relatively high potential fecundity, extremely
strong adult density-dependent recruitment into the pool of breeding adults, albeit by
different mechanisms in LH and HL food regimes, and a time delay of ~ 20 days before the
impact of adult density at any given time would be felt on recruitment into the pool of
breeding adults. The destabilizing effect of this time delay would be further exacerbated by
the relatively high daily adult mortality rate (fig. 4.2), resulting in a fairly rapid turnover of the
cohorts making up the adult population. Thus, in the HL. food regime, large numbers of eggs
would be laid when adult numbers were very low because relatively more females would be
able to get enough protein for egg laying. As a result of negligible pre-adult competition,
these large numbers of eggs would eventually become large numbers of adults after ~ 20
days. At that point, even though egg production would drop drastically due to increased
competition among females for scarce protein supplies, recruitment into the adult life-stage
would continue for several days before the effect of the adult density-dependent reduction in
fecundity eventually translated into a sharp drop in adult numbers. Every 20 days or so, on
average, one would expect adult numbers to alternate between very high and very low levels,
giving rise to a population cycle of ~ 40 days periodicity. An essentially similar mechanism
was also at work in the LH food regime. A very large number of eggs would be laid when
adult numbers were reasonably high because L. cuprina females are quite fecund, and there
was no limitation on adult access to protein. The large numbers of newly hatched larvae
would then undergo severe competition for limited food, with the result that all or most
larvae would not be able to attain the critical minimum size for successful pupation.
Consequently, there would be little or no recruitment into the adult life-stage. Adult

numbers, at the same time would be declining due to mortality, and soon the adult density
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would fall to a point where the number of eggs laid would be low enough to significantly
lessen the severity of larval competition. At this point, recruitment into the adult life-stage
would begin to increase, and adult numbers would again build up to a point where severe
larval competition due to an excess of eggs being laid would cause recruitment into the adult
stage to decline, thus giving rise to cycles in adult numbers similar to those seen in the HLL
populations.

It is clear from the explanation of how LH and HL food regimes give rise to cycles in
adult numbers, that an LL regime in which both larvae and adults are given limited food
supply would tend to exhibit relatively stable dynamics of adult numbers. In an LL regime,
very high adult numbers would still lead to a crash in adult numbers after ~ 20 days, largely
due to the density-dependence of female fecundity. However, if adult numbers were very
low, large numbers of eggs would be laid but would not cause as large a pulse in recruitment
into the adult stage as would be seen in the HL food regime due to density-dependent larval
mortality in the LL food regime. Similarly, moderate numbers of adults laying eggs in an LL
food regime would not elicit levels of larval competition as severe as they would in an LH
food regime because of density-dependent fecundity in the LL regime. Overall, thus, an LL
food regime would be predicted to result in adult dynamics that were relatively stable, in
terms of decreased amplitude of oscillations in adult numbers. Such an effect was, in fact
seen, in an experiment in which populations were first maintained on an LH food regime, in
which larval food supply was held at 50 g per day, for about a year and a half. These
populations showed the ~ 40 day cycles typical of the LH food regime, with maxima of
about 2000-4000 adults. After a year and a half, the populations were switched to an LL
food regime by also restricting the supply of liver to the adults to 1 g per day. This switch in

food regime led to a noticeable alteration in the dynamics of adult numbers. The mean

L. D. Mueller & A. Joshi 4-12



Stability in Model Populations Blowflies

number of adults increased three to four fold, and although numbers continued to fluctuate
quite a bit, the fluctuations were no longer regular and their amplitude was much reduced
(tig. 4.6). Moreover, eggs laid at all adult densities, even fairly high ones, did result in

appreciable recruitment into the adult stage under the LL food regime (fig. 4.06).
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FIGURE 4.6. Time series data for 330 days from an experiment in which a population kept on an
LH food regime with 50 g food per day for larvae and excess food for adults, was switched to an
LL food regime where adults were given only 1 g liver per day. The transition between food
regimes is indicated by the vertical dashed line. Horizontal gray bars represent egg laying periods
for which the eggs laid actually gave rise to an appreciable number of eclosing adults. Data for
the whole experiment have not been shown: the population was maintained for a year after
switching food regimes and the dynamics throughout that period were qualitatively similar to
what is depicted here for the first 170 days after the switch (modified after Nicholson, 1957).

As we mentioned earlier, Nicholson also subjected populations maintained on LH or HL.
food regimes to various regular demographic and environmental perturbations, especially as
his major interest was in probing the mechanisms whereby populations could compensate

for the effects of such perturbations on the numbers of different life-stages. One series of
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experiments involved culling different fixed proportions of the adult population (between
50% to 99%, depending on treatment) every two days in populations subjected to LH or HL.
food regimes. The major observation from populations subjected to HL food regimes was
that the removal of adults essentially reduced competition among females for the limiting
protein supply thus, the birth rate per individual went up. Since there was excess food for
larvae in these food regimes, pupal production and adult eclosion per day also increased. To
a large degree, therefore, the removal of adults from the cultures resulted in increased
recruitment into the adult life-stage, partly compensating for the perturbation. For example,
the mean number of adults in cultures kept on an HL food regime without adult removal
was 2520, whereas in cultures where 50% of adults present were removed every two days,
the mean number was 2335; even cultures where 90% of the adults were removed every two
days had a mean adult population as high as 878 (Nicholson, 1954 a). In cultures maintained
on the LH food regime, increased removal of adults reduced the numbers of eggs laid per
day, thereby alleviating larval competition for the limited supply of larval food. The
reduction in larval competition decreased the mean larval mortality, from ~98% in cultures
where no adults were removed to ~77% in cultures where 95% of the adults were removed
every two days, resulting in increased recruitment into the adult population.

Perhaps more pertinent to our focus on population dynamics and stability are results
from experiments involving regular fluctuations in the amount of food provided to adults in
populations subjected to HL. food regimes. In these experiments, Nicholson (1957) set up 10
populations in which there was unlimited supply of larval food and water and sugar for the
adults. Two of these populations served at controls, with a constant supply of liver to the
adults fixed at either 0.1 g or 0.4 g per day. In the other eight populations, the adult supply

of liver per day was varied systematically from 0.05 g per day, up through 0.5 g per day, and
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back again. The populations subjected to this fluctuating supply of liver for the adult life-
stage differed from one another in the periodicity (10, 20, ...., 70, 80 days) of the imposed
cycles in food supply. These populations were maintained for about two years, and
demographic records were maintained as described earlier for the LH and HL regimes.

In all but one of the populations subjected to a fluctuating adult food supply, the
dynamics of adult numbers underwent changes in periodicity as time progressed. In the
population with adult food supply cycling every 20 days, adult numbers during the first 400-
500 days fluctuated with the expected periodicity of ~ 40 days, such that one cycle of adult
numbers encompassed two cycles of food supply. Thereafter, however, there was a sudden
and dramatic change in the periodicity of the fluctuations in adult numbers, which began to
cycle with a periodicity of ~ 20 days. At the other extreme, adult numbers in the population
with food supply cycling every 80 days, fluctuated with the expected periodicity of ~ 40 days
for the first 300 days or so, showing two peaks of adult numbers per food supply cycle.
After about 300 days had elapsed, however, the cycles in adult numbers appeared to break
up such that there was only one major peak in adult numbers, with several much smaller
peaks, during a single cycle of food supply. Similar effects were seen in other populations
with fluctuating adult food supply; typically the periodicity of the cycles in adult numbers
was altered such that it became the same as that of the food supply cycle, or a multiple of it.
Nicholson interpreted these results as supporting his view that when a population underwent
oscillations in density due to intrinsic factors, environmental cycles would be “impressed
upon the population”. Why exactly he expected this to happen is not entirely clear, but it is
likely that he had some kind of analogy with oscillator entrainment mechanisms in mind.

Interestingly, the dynamics of adult numbers in the control populations in this

experiment also underwent a marked change around 400 days after the cultures were
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initiated (fig. 4.7). During the first 400 days or so, the control populations exhibited typical
large amplitude cycles in adult numbers with a periodicity of ~40 days, as expected in an HL
food regime. Thereafter the fluctuations became very irregular and the minima in population
sizes, in particular, became much higher than expected in an HL regime. The extremely
episodic pattern of egg production typical of the HL food regime, with eggs being laid only
during trough in adult numbers, also broke down after about 400 days. Although then
number of eggs laid tended to fluctuate in inverse relationship to adult numbers, at least a

few hundred eggs were being produced more or less all the time.
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FIGURE 4.7. Time series data from one of the populations that showed an apparent change in
dynamics after about 400 days of rearing on a HL food regime. Horizontal grey bars represent
times that appreciable numbers of eggs (at least a few hundred) were laid. (data from Nicholson,
1957).

Nicholson (1957) interpreted this as an indication that evolutionary changes had taken
place in these populations over the course of his experiment, and that these changes affected
key life-history traits that had an impact upon the dynamics of adult numbers in these

populations. To test this hypothesis, Nicholson compared the fecundity, at different levels of
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protein supply, of females from one of the control populations, as well as from some the
fluctuating food supply populations, with that of flies from the ancestral laboratory
population, as well as wild caught flies. He found that flies from the control population and
three of the populations used in the fluctuating food supply experiment had a far lower
minimum protein requirement for egg laying, compared to either the ancestral population, or
to wild flies. In fact, the flies from the experimental populations could actually lay reasonable
numbers of eggs, sufficient to sustain a culture, even when provided with no protein.
Nicholson, therefore, concluded that the extreme competition for protein among adults, at
least for part of each food supply cycle, had resulted in natural selection favoring the ability
of females to lay eggs despite minimal protein intake.
MODELING THE DYNAMICS OF L. CUPRINA POPULATIONS

Given the length of the time series of adult numbers generated by Nicholson’s
experiments, and the wealth of demographic information he collected, it is not surprising
that these data have been the basis for several modeling efforts, even decades after the

experiments were conducted. May (1973) first showed that the time-delayed logistic model,

dN,
dt

N
rN {1—%}, the simplest continuous time population model that can generate

cyclic behavior, gave reasonable fits to the observed data, with time delay, D, of about 9
days. This exemplifies the inherent problem in post-hoc model fitting, because, despite the
observed reasonable fit, the time delay of 9 days is clearly much smaller than the minimum
ontogenetic time delay from egg to egg (~ 15 days) in these populations. Similarly, another
simplistic model, relating adult mortality rates to the adult density at two previous censuses,
and modeling recruitment into the adult stage as a function of adult densities at three

previous censuses, also provides reasonably good fits to the observed data (Manly, 1990). At
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the other end of the spectrum of model complexity, a stage-, age-, and size-structured model
incorporating mass dynamics also provides good fits to observed dynamics of different life-
stages (Gutierrez, 1996). These kinds of modelling effort, however, do not really add much
to our understanding of the biological basis of the observed dynamics, especially because
there have been no empirical studies on blowflies, subsequent to Nicholson’s work, that
would possibly enable us to differentiate between different models. Modelling alone, without
repeated testing of the models using experimental populations, rarely provides great insights
into factors governing the dynamics of a given population. It is the repeated mutual feedback
of theory and experiment that really yields great dividends in population ecology research, as
we shall see in subsequent chapters on Tribolium and Drosophila.

An interesting point about blowfly dynamics was made by Brillinger e 2/ (1980), using a
fairly simple model incorporating both age- and density-dependence of adult mortality.
Simulations of their model give rise to chaotic dynamics in which there is a periodic structure
for large durations of time, which sometimes breaks down into episodes of apparently
random dynamics. This is interesting because of the similarity to what was seen in the
control populations of the fluctuating food supply experiment (fig. 4.7). In fact, Nicholson
often saw the periodic cycles in adult numbers break down in the course of various
experiments and typically terminated the cultures because he suspected genetic changes in
the population were responsible. Empirically speaking, it therefore remains an open question
as to whether these episodes were in fact a breaking down of the apparently periodic
structure in the chaotic dynamics, as predicted by Brillinger ez o/ (1980). However, this issue
has also been addressed theoretically, as described below.

A delay differential equation model, slightly more elaborate than that of May (1973) was

used by Gurney ez 2/ (1980) and Nisbet and Gurney (1982) in an attempt to investigate some
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of the possible mechanisms underlying both gross and fine level dynamic behaviors seen in
the L. cuprina populations. Assuming that egg production depends only on current adult
density, survivorship from egg to adult depends only on the number of competitors of the
same age, and maturation from egg till adulthood takes exactly D time units, they modeled
the adult recruitment rate, R, as R = R(IN,;). Further assuming that per-capita adult

mortality, o, is independent of density and age, the rate of change of adult numbers can be

N
written as dd_t: R(N,_ p) — N, . Finally, recall that in both LH and HL food regimes,

recruitment into the adult life-stage is essentially zero D time units after a point of high adult
density, whereas it is somewhat higher following points of low adult density. Moreover, the
recruitment must be zero following a point of zero adult density, and the function has a
single maximum. Thus, the dependence of the recruitment function upon adult density can
be modeled as R(IN) = PNexp(-N/Ny), where Np is the adult density corresponding to the
maximum of the recruitment function. The complete model can, thus, be written as

d’\(lj—tt‘D =PN, ;exp{-N, , / N,}-6N,.

The analysis of this model has been described exhaustively by Nisbet and Gurney (1982),

and we shall, consequently, restrict ourselves here to the major results emanating from the
analysis. Basically, the model has a single non-trivial equilibrium at N* = Ny In(P/ ), and the
local stability of this equilibrium, and the qualitative aspects of the fluctuations about it, are
completely determined by the quantities PD and 6D. The observed value of P, the maximal

per capita fecundity, as estimated from Nicholson’s data, lies between 7.4 and 11.4 eggs per

day. This is consistent with P values required to place the populations in the region of PD-

OD parameter space characterized by stable limit cycle behavior. The other type of dynamic
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behaviour that would also have been consistent with observed time series data is quasi-cyclic
fluctuations, with episodes of relatively regular cycles of period similar to the ontogenetic
time delay, D, interspersed with bursts of noise. This kind of behaviour can be produced as a
result of demographic stochasticity in a system that, from the point of view of a
deterministic model, lies in the stable and underdamped region of parameter space (Gurney
et al., 1980). Clearly, for this possibility to hold in the case of Nicholson’s data, the estimated
point equilibrium would need to be stable and underdamped, as opposed to unstable. In
order for the point equilibrium to fall in that region of the relevant parameter space,
however, P would need to be an order of magnitude greater than the observed values. It
seems reasonably clear, therefore, that the underlying dynamics of the L. cuprina populations
in the LH and HL food regimes is that of a stable limit cycle about an unstable point
equilibrium. Further support for this conclusion comes from simulations of the model (eq.
4.1) under both the quasi-cyclic and limit cycle hypotheses, with stochastic variation in birth
and death rates added to the deterministic delay differential equation (Renshaw, 1991). The
results of these simulations also clearly show that the hypothesis of quasi-cyclic behavior due
to a stable underdamped equilibrium cannot give rise to dynamics that resemble the
observed data, whereas simulations under the stable limit cycle hypothesis capture at least
the major qualitative features of the observed dynamics.

Interestingly, deterministic simulations of this model (eq. 4.1) with parameter values
drawn from Nicholson’s data for populations on an LLH food regime, are also able to recover
the splitting up of recruitment into the adult stage into two discrete bursts in each population
cycle that was described earlier (see fig. 4.5). This is due to the complexity of dynamic
behavior that a population in the limit cycle region of parameter space can exhibit, especially

if it is relatively far from the local stability boundary (Gurney e 2/, 1980). In this model (eq.
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4.1), the pattern of how recruitment into the adult stage is distributed within each population
cycle depends upon how low the adult numbers fall during each trough. When the minimum

adult number, N

w

is greater than No, then recruitment into the adult stage shows one peak
per population cycle. When N, < N, on the other hand, the single peak begins to show
signs of splitting, and finally, when N, << N, as is the case in the LH food regime, the
behavior of recruitment itself becomes cyclic, with two or more peaks of varying degrees of
irregularity per population cycle, especially if the cycles in adult numbers are not simple
(Gurney e al, 1980).

An extension of the same model (eq. 4.1), incorporating the protein dependence of
fecundity, has been used to explain the results from the fluctuating food supply experiment
described in the previous section (Stokes ez a/, 1988). The parameters d, P, No and D were
determined from the data on the control population where adults were given a fixed supply
of 0.4 g liver per day. The time series was divided into seven consecutive 100 day periods,
and parameter estimation was done separately for each such period. The results suggested
that over the course of the expetiment, the population moved across the PD-0D parameter
space, from the unstable to the stable region, largely as a consequence of reductions in both
maximal fecundity, P, and the per capita protein intake at No. This latter quantity represents
the critical minimum protein requirement for egg laying. Simulations incorporating these
time-dependent changes in parameter values were then carried out for conditions mimicking
the control population with 0.4 g protein per day, as well as the population in which adult
protein supply fluctuated with a periodicity of 20 days. These simulations were able to
capture the changes in dynamics that had been observed in the data after a few hundred
generations of maintenance. In the case of the 20 day food supply cycle, during the period

when the population was in the unstable region of parameter space yielding stable limit
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cycles of ~ 38 day periodicity, the effect of the external food supply cycle was merely to drag
the period of the intrinsically driven population cycle upto the nearest sub-harmonic of the
food supply cycle (40 days). Once the population had moved into the stable region of
parameter space, its intrinsic limit cycle was no longer a constraint, and it began to track the
20 day food supply cycle. The lack of classically stable dynamics in the control population
during the last few hundred days of the experiment can be ascribed to noise.

Overall, the results from the delay differential model (eq. 4.1) appears to adequately
capture various aspects, at both fine and gross levels, of the observed dynamics of L. cuprina
populations under a variety of environmental conditions. The fact that such a simple model
is able to explain many of the finer aspects of the dynamics of these populations reinforces
the view that the driving force of the dynamics of adult numbers in these laboratory
populations was the combination of high base-line fecundity and very strong time delayed
adult density-dependent recruitment into the adult life-stage, with other density-dependent

regulatory factors playing at best a minor role.
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CHAPTER FIVE

Tribolium

Flour beetles of the genus T7ibolium have been used for research in population biology
since the early decades of this century and, along with fruit flies of the genus Drosophila, are
among the best understood model systems for studying single-species population dynamics.
Of the 26 or so species of Tribolinm, T. confusum and T. castanenm have been most widely used
in population ecology (King and Dawson, 1972), and most of our discussion will,
consequently, be limited to these two species. Both species are morphologically and
ecologically similar, and are easily cultured in the laboratory in coarse-ground flour,
supplemented with yeast. Chapman (1918) began the early studies on the biology of Tribolium
cultures due to its economic importance as a cereal pest, and was soon arguing for its use as
a model system to study population ecology. In the 1920s, Chapman was influenced by the
theoretical models of population ecology developed independently by Lotka and Volterra,
and had also spent some time with Fisher, studying experimental design. All these influences
coalesced into an approach in which he used careful studies on laboratory cultures of
Tribolium as a means to empirically estimate major parameters of the mathematical models,
especially those that reflected density-dependent regulatory mechanisms (Chapman, 1928).
He also demonstrated major fluctuations in population size if cultures were established only
with adults, and argued that cannibalism of immature stages by adults was the major
determinant of population size in Trbolium (Chapman and Whang, 1934). Chapman’s work
sparked off a series of long term studies of the population ecology of Tribolium cultures
(reviewed in King and Dawson, 1972) which investigated not only the biological aspects of
population regulation in single species cultures, with which we shall primarily concern

ourselves in this chapter, but also included some of the earliest studies on the influence of
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genetic and environmental variation on the outcomes of inter-specific competition (Park and
Lloyd, 1955; Lerner and Ho, 1961), as well as studies of dispersal and other behaviors
relevant to life-history evolution and population dynamics (Naylor, 1959, 1965; Dawson,
1964; Park et al., 1968).

Indeed, laboratory cultures of Trbolium continue to be used extensively for studies in
population ecology and evolutionary genetics (e.g. Goodnight, 1990b; Wade, 1990; Dennis ez
al., 1995; Pray, 1997; Benoit et al, 1998). In this chapter, we will briefly review the basic
biology of Tribolium cultures and show how this knowledge has been used to develop
detailed models of population dynamics which are in close agreement with observed data on
population size in laboratory cultures of Tribolium. Our purpose here is not to cover the
biology and laboratory ecology of Tribolium spp. exhaustively: very detailed and
comprehensive reviews can be found in books by Sokoloff (1972, 1974, 1977) and by
Costantino and Desharnais (1991). We will try to focus more on highlighting the main
factors that have now been identified as the major determinants of population dynamics in
Tribolium so as to be able to meaningfully compare and contrast results from different model
systems in the final chapter of this book.

LIFE-HISTORY OF TRIBOLIUM IN THE LABORATORY

Most studies on Trbolium cultures have used a protocol ensuring overlapping
generations, with a census of the number of individuals in various life stages at regular, often
monthly intervals and a shift of the entire population to fresh medium at each census. In the
laboratory, the life-cycles of both T. castaneum and T. confusum are very similar. Eggs hatch in
4-5 days at 34°C and in 5-6 days at 29°C, the two most commonly used rearing temperatures,
with T. castaneum eggs hatching somewhat earlier than those of T. confusum. Typically, cultures

are raised on some kind of course flour (often with yeast or oil added) in bottles, vials, or

L. D. Mueller & A. Joshi 5-2



Stability in Model Populations Tribolium

other suitable containers kept under constant darkness in incubators with humidities ranging
from 20% to 70% in various studies. The eggs have a sticky external surface and, therefore,
get coated with the medium. The duration of the larval stage is about 15-20 days in these two
species, and the number of larval instars varies from 6-11, but is usually about 8. The pupal
duration is about 5-7 days, and females can be fertilized after 3 hours (1. castanenn) or 17-20
hours (I. confusum) post eclosion. Adult females can begin egg laying at about 100 hours (7.
castanenms) or 120 hours (1. confusum) after eclosion, and adults can live for up to 200 days.
The different life stages can be separated for censusing by simply sieving the medium
through a series of sieves with appropriate pore sizes. Variation in the duration of different
life stages, as well as in the number of larval instars, is known to be affected both by
genotype and environment, especially temperature, food and humidity (King and Dawson,
1972).
Pre-Adult Stages

Compared to Drosophila cultures, where the larvae are the predominant consumers of
food resources, the impact of larval density on the dynamics of a typical T7ibolium culture is
not quite so important. In fact, at the kinds of larval density attained in typical cultures, larval
density effects upon larval mortality are rather small (fig. 5.1). In typical Tribolium cultures,
adults coexist with larvae and, consequently, the primary density-dependent effects on
population dynamics are often due to adult rather than larval density. Thus, we must take
into account the effects of both larval and adult density on the biology of each life stage.
Another unique feature of Tribolium population dynamics is the very important role of
cannibalism in determining population size; both adults and larvae of Tribolium eat eggs,
smaller larvae, pupae and callows (very young adults with soft exoskeletons), and at least in

larvae, the cannibalism rate increases with age (figs. 5.2, 5.3, 5.4). Indeed the major effect of
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larval density upon itself is indirect, through larval cannibalism of eggs. Similarly, the major

effect of adult density on larval density is also through cannibalism of eggs by adults.
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FIGURE 5.1. Larval mortality as a function of larval density per unit food medium (number of
larvae per vial in 220 mg of food) (data from Howe, 1963). The shaded area represents the range
of larval densities (in terms of larvae per unit food medium) typically seen in laboratory cultures of
T. castaneum. It is clear that for the range of densities seen in typical Tribolium cultures, larval
density-dependent larval mortality will be a negligible factor in determining population dynamics.

Development time from egg to eclosion in Tribolium is atfected by temperature and

humidity. Egg and pupal durations decrease with increasing temperature and are relatively
unaffected by humidity, whereas larval duration is affected by both factors. In general,
development of I. castanenm is faster than that of T. confusum, and the difference is magnified
at higher temperatures. Egg to adult survivorship of T. castaneum is also greater than T.

confusum at higher temperature, and these temperature effects correlate with the distribution
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of these two species in the wild (Howe, 1956, 1960). Development time in Trbolinm is also
adversely affected by increasing adult density, although this is entirely due to a lengthened
larval developmental period (Park ez /., 1939). A similar effect is seen by manipulating larval
density: increased larval density in unrenewed medium results in slower larval development
and higher larval and pupal mortality. However, if the medium is renewed at two-day
intervals, these density-dependent effects are not seen, suggesting that the direct effects of
larval crowding per se are relatively less important than the effects of density on the extent of
environmental conditioning. The early work on the effects of larval density on the biology of

Tribolinm has been extensively reviewed by Park (1941).
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FIGURE 5.2. Age-dependent egg cannibalism by larvae of Tribolium spp (data from Park et al.,
1965). Data depicted are mean (+ s.e.) fraction of eggs cannibalized, averaged over 4 strains of
each species, in an experiment in which 100 eggs were exposed to predation by 50 larvae of a
particular age group, in vials with 8 g food medium.

As the larvae and adults of Tribolium feed on and move through the culture medium, they

alter its physical and chemical characteristics in many ways, although food medium in a
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crowded Tribolinm culture does not typically disappear the way it can in high larval density
cultures of Drosophila, presumably as a result of high cannibalism of eggs by adults which
tends to keep larval density in check. Nevertheless, the nutritive value of flour in the medium
is reduced with increasing age of the medium. At the same time there is also a build up of
frass and metabolic wastes, as well as of gaseous methyl- and ethyl-quinone given off by
adults. Flour medium in which adults and/or larvae have lived for sometime thus acquires a
characteristic consistency and odor and is referred to in the Tribolium literature as
“conditioned” (King and Dawson, 1972). Such “conditioning” of the flour medium has no
effect on egg hatchability, but interestingly markedly reduces the extent of adult cannibalism

of eggs. It also lengthens the duration of larval development and decreases egg to eclosion

survivorship (Park, 1941).
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FIGURE 5.3. Level of cannibalism by adults of Tribolium spp on eggs and pupae (data from Park
et al., 1965). Data depicted are mean (+ s.e.) fraction of eggs/pupae cannibalized, averaged over
4 strains of each species. Egg cannibalism was recorded in vials containing 8 g of food medium
and 100 eggs, exposed to predation by 25 males and 25 females for a duration of 48 hours.
Pupal cannibalism was recorded in vials containing 8 g of food medium and 200 fresh pupae,
exposed to predation by 10 males and 10 females for a duration of 7 days.
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There appears to be considerable additive genetic variation for development time in both
T. confusum and T. castanenm, as selection for both faster and slower development has been
successful in these species (Dawson, 1965; Engler and Bell, 1970). The distribution of
development time in T. confusum is of the typical “bell shape” usually seen in insects reared at
moderate densities, whereas that of T. castanenm is distinctly non-normal and often bimodal
(Lerner and Ho, 1961). There is at present no clear explanation for why this is so, but it is
interesting in the light of a recent observation that adaptation to extremely crowded
environments in Drosophila laboratory cultures can lead to the evolution of two distinct
strategies for dealing with high larval density, resulting in some individuals being fast feeders
and early developers whereas others are slower feeders and developers but exhibit greater

tolerance to toxic metabolic waste (Borash e al., 1998).
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FIGURE 5.4. Level of cannibalism by larvae of Tribolium spp on pupae (data from Park et al.,
1965). Data depicted for ‘experimentals’ are mean (+s.e.) fraction of pupae cannibalized,
averaged over 4 strains of each species. Pupal cannibalism was recorded in vials containing 8 g
of food medium and 50 pupae, exposed to predation by 100 6-day old larvae for a duration of 8
days. Controls were vials set up similarly except that no larvae were added: the ‘control’ data are
mean levels of pupal mortality in the absence of larval cannibalism.
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To sum up, the major effects of density, of both adults and larvae, on the pre-adult
stages of Tribolium are as follows (some effects of increased density are mediated through
“conditioning” of food medium):

(i) Pre-adult development time and mortality increase with increasing density.
(if) Mortality of eggs and pupae through cannibalism increases with increasing
density of larvae and adults, although cannibalism rates per adult decline with
increasing density.
(i) Mortality of eggs and pupae through cannibalism decreases with increase in
their density for any given density of larvae and adults.
(iv) Pre-adult mortality due to cannibalism at any given density may be lower in
“conditioned” as compared to fresh medium.
Of these, it is generally felt that the rates of cannibalism of eggs by larvae, and those of
cannibalism of eggs and pupae by adults, are the major density-dependent factors affecting

the dynamics of T7ibolium cultures (Dennis ef al., 1995) (tig. 5.5).
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FIGURE 5.5. Summary of the major density-dependent effects on life-history traits in laboratory
cultures of Tribolium. Cannibalistic interactions are depicted with solid lines, whereas non-
cannibalistic effects are depicted with dashed lines. Thick lines indicate the effects that are
thought to dominate the dynamics of Tribolium cultures.

Adult Stage

Although adults in a typical Tribolium culture are outnumbered by larvae and pupae, the
adult stage is very important in determining the dynamics of these cultures. Adult lifespan is
an order of magnitude greater than the duration of the pre-adult stages, and adult density
feeds back on pre-adult numbers through “conditioning” of the medium, density-
dependence of female fecundity, and, most importantly, cannibalism of eggs, larvae and
pupae (King and Dawson, 1972; Costantino and Desharnais, 1991). In the previous section,
we have already outlined the major effects of adult density on pre-adult stages. Here we
discuss adult cannibalism in slightly greater detail, and also discuss the effect of adult density

on female fecundity.
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As described eatrlier, adult Trzbolinm beetles feed upon eggs, pupae and callows. The rates
of cannibalism by adults tend to be higher than those of larvae, and adult cannibalism of
pupae is more severe than that of eggs (Desharnais and Liu, 1987) (fig. 5.3). Females of both
T. confusum and T. castanenm exhibit cannibalism rates several times greater than males (King
and Dawson, 1972). Unlike larvae, cannibalism rates of adults do not seem to increase
significantly with age. The basic nature of cannibalistic interactions in Tribolium has been
viewed as the outcome of random collisions between eggs/pupae and larvae/adults, with
some probability of an egg getting eaten upon a collision (Crombie, 1946). This has led to
the formulation of mortality due to cannibalism as a linear function of the number of
predator (larvae or adult) individuals that simply adds on to an intrinsic mortality rate
(Hastings and Costantino, 1987). Alternatively, one can define ¢; as the probability that a
predator (larva or adult) / encounters a prey (egg or pupa) 7 in a given period of time, given a
total predator population of N during that time interval. Then, assuming predator prey
contacts to be random, and assuming that a contact means the prey gets eaten, the
probability of a prey item not getting eaten in the given time interval is (1 - )", which can be
approximated as exp(-¢;N) (Dennis ¢ a/., 1995). This approach to modeling cannibalism has
often been used in models of Tribolium population dynamics, even though it ignores the
phenomenon of predator satiation: survival of pupae despite cannibalism by adults actually

increases at higher adult densities (Park e a/., 1968; Mertz and Davies, 1968).
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FIGURE 5.6. Schematic representation of the profile of age-dependent female fecundity in T.
castaneum (data from Howe, 1962). Data are from 12 females and 12 males kept in a vial at 25°
C and 70% relative humidity. Fecundity increases early in life to a maximum, remains fluctuating
at that level untill an age of 100-120 days, and thereafter undergoes an almost linear decline. It
should be noted that this is an idealized representation of observed trends; actual fecundities
fluctuate considerably from day to day.

In many insect species, density-dependent control of female fecundity is a major
component of population regulation. Like in many other insects, fecundity of Tribolinm
females is dependent upon both age and adult density. Fecundity tends to pick up rapidly
after a few days and peaks relatively early in adult life. Thereafter, fecundity remains around
its maximum level for a considerable time before beginning to undergo a more or less linear
decrease with age (fig. 5.6). Daily fecundity in Tribolium is rather low in comparison to many
other insects. Even under ideal conditions of fresh medium, low density and temperature of

34°C, fecundity in Tribolinm does not exceed ~ 20 eggs per day per female (Park and Frank,

L. D. Mueller & A. Joshi 5-11



Stability in Model Populations Tribolium

1948). By comparison, daily fecundity of well fed Drosophila females at very low densities can
exceed 100 eggs per day. The decline of fecundity with increasing adult density in Tribolium is
also not very dramatic. We have fitted a hyperbolic equation used to model adult density

effects on female fecundity in Drosgphila (F(N) = a/(1 + bIN): Mueller and Huynh, 1994) to

data on mean fecundity of T7ibolium temales at various adult densities (fig. 5.7).
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FIGURE 5.7. Decline in fecundity of Tribolium females with increasing adult density. Observed
data are from Rich (1956), pooled across several different treatments with varying duration of
exposure to a given density. The solid line connects predicted data points based on least-
squares fitting of a hyperbolic function modeling fecundity as a function of adult numbers at time
t, Ni, as F(Ny) = a/(1 + bNy).

The model fits the data very well (R? = 0.99), and yields estimates of 2 = 13.61, & = 3.06 X
10-3. What is more pertinent here is the very low value of parameter 4, which determines the

sensitivity of female fecundity to increases in adult density. For example, in Drosophila, even
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under a nutritional regime that markedly reduces the sensitivity of fecundity to adult density,
the estimate of 4 is an order of magnitude larger at 2.227 X 102 (Mueller ¢z a/, 1999).
Fecundity of females in Tribolium is also reduced in “conditioned” medium (King and
Dawson, 1972). Overall, then, fecundity in Tribolium tends to be rather low, even at low
densities and is, moreover, relatively insensitive to adult density. These two facts together
suggest that density-dependence of female fecundity may not play a very significant role in
determining the dynamics of Trbolium cultures. Indeed, the consensus seems to be that the
primary determinants of Trbolium population dynamics are density-dependent cannibalism
rates, and rates of adult mortality which do not appear to be strongly density-dependent
(Dennis e al., 1995). Moreover, adult mortality rates are also relatively age-independent, at

least over the range of ages for which fecundity is relatively high in Tribolium spp (fig. 5.8).
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FIGURE 5.8. Age-specific mortality rates (‘observed’ data) for adults of Tribolium spp (data from Young,
1970). ‘Predicted’ lines correspond to expectations based on fitting the Gompertz equation relating mortality
rates to age (u(x) = Ae”™) to the data from the two species. Parameter estimates are A = 0.0749 and « =
0.00639 for T. confusum (R? = 0.94), and A = 0.0901 and « = 0.00742 for T. castaneum (R? = 0.87). The
arrow indicates the age beyond which fecundity declines rapidly with increasing age.

A MODEL OF TRIBOLIUM POPULATION DYNAMICS
In most typical laboratory cultures of T7ibolinm where food is renewed at regular
intervals, larval and pupal numbers tend to show large and fairly regular fluctuations whereas
adult numbers tend to show relatively stable dynamics (figs. 5.9, 5.10), consistent with the
notion of a steady-state distribution of adult population size (Desharnais and Costantino,
1982; Dennis and Costantino, 1988; Peters ef al, 1989). It has also been seen that the
dynamics of adult numbers are to a large degree affected by the initial age-composition of

the founding population. Populations initiated entirely by adults tend to show greater
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fluctuations in adult numbers from one census to the next, as compared to populations
established with a mix of individuals of the various life-stages. Some of the early studies also
established that egg and pupal numbers tend to oscillate in T7ibolium cultures, largely due to
cannibalistic interactions between larvae and eggs (King and Dawson, 1972). Young (1970)
showed that cannibalism of pupae rather than eggs was largely responsible for regulating the

equilibrium adult number.
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FIGURE 5.9. Dynamics of larval (active feeding larvae), pupal (post-feeding larvae, pupae and
callows) and adult numbers over a 20 week period in a culture of Tribolium castaneum with
resources renewed every 2 weeks. Data are from Control Population ‘a’ of Desharnais and Liu
1987, and are fairly representative of dynamics of Tribolium cultures maintained on similar
schedules.

A Model of Egg-Iarva Dynamics
It is clear from the ecology of Tribolium cultures discussed above that the major factors

likely to dominate the dynamics of laboratory populations of Tribolium are the density-
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dependent cannibalism of eggs by larvae, and of eggs and pupae by adults. Indeed, the
observed oscillations in egg, larval, and pupal numbers can be explained satisfactorily by a
consideration of the egg-larva cannibalistic interaction alone. Early on, Chapman (1933) had
noted the apparent similarity between the phase-lagged oscillations of egg and larval
numbers observed in Tribolium cultures and those predicted by models of predator-prey

interactions.
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FIGURE 5.10. Results of time series analysis on data for larval, pupal and adult numbers
depicted in figure 5.9. The first panel shows the autocorrelations, and the second the
periodogram of the three time series. All data were detrended before analysis. For larvae and
pupae, autocorrelations for the first 7 and 6 lags, respectively are significant at the 0.05 level,
whereas for adults the autocorrelations at lags 1, 2, 10 and 14 are significant.

Hastings and Costantino (1987) focus on the cannibalistic interaction between eggs and
larvae, ignoring changes in the number of adults because larval-egg dynamics are taking place
on a faster time scale than adult dynamics. The age (#) distribution in the population at time

t, denoted by #(7, a), satisfies

én(t’a%ﬁén(t’a%a = —u(t,a)n(t,a),
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where £(#, a) is the time- and age-specific death rate, which also encompasses cannibalism
rates. Birth rate, 4(7), included as a boundary condition #(#0) = b, is taken as a constant
because adult population size is assumed not to change on the time scale of egg-larval

dynamics. The death rate, (t, @), is modeled as

u(t,a) = u, + N, (t) for O<a<A, and
u(t,a) =y, for A <a<A+A,

where ages 0 through 4, and A, through A4, + A, are assumed to denote eggs and larvae,
respectively. Egg mortality through effects other than larval cannibalism is g4, this includes
egg cannibalism by adults, also taken as a constant. Mortality of larvae is £, and the death
rate of eggs through larval cannibalism is assumed to be linear and is denoted by ¢N(?),
ignoring the effect of larval age and egg density on cannibalization rates. Ultimately, a single

equation for the number of larvae at time 7 is obtained as
A Ae
N, (t) = IO b exp[—yeAe - c,jo N (t—-a- s)ds} exp(—u,a)da.

Equation 5.3 is the basic model analyzed by Hastings and Costantino (1987), assuming
further that the low death rate of Tribolium larvae justifies setting 1, = 0.

Analysis of this model reveals that equation 5.3 has a unique equilibrium as long as 4> 0,

and the equilibrium size of the larval population, N, is the solution of
N, =bA exp(—p1, A, )exp(—c, AN, [1-exp(u A)]/m A -

This equilibrium Nl can be locally stable or unstable, leading to oscillatory behavior,

depending upon the egg production rate (4), larval cannibalism rate (¢) and the duration of

the egg and larval stages (A, A, respectively). In general, for a given value of ¢, and

assuming 4, to be very small, the equilibrium is stable for very short or very long larval
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periods, and this result is relatively independent of the egg production rate (fig. 5.11). For
intermediate levels of larval duration (~ 5-30 days), the equilibrium is stable only for low egg
production (< 100 eggs per day or so). Longer egg durations are destabilizing in this model,
as egg duration is increased for any fixed larval duration, the maximal value of & permitting a
stable equilibrium decreases quite dramatically (fig. 5.11). And finally, increased rates of
larval cannibalism are destabilizing, causing a reduction in the parameter space permitting a

stable equilibrium.
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FIGURE 5.11. Schematic depiction of the stability boundary for the equilibrium number of larvae
in the model of egg-larval dynamics (eq. 5.3). The different curves correspond to increasing
durations of the egg period. Parameter values above the curves yield unstable equilibria, causing
oscillations in larval numbers, whereas those below the curves vyield locally stable equilibria
(modified after Fig. 1 in Hastings and Costantino, 1987).
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What is somewhat interesting in this model (eq. 5.3) is that it suggests that there are
many biologically meaningful combinations of parameters for which the equilibrium larval
number is locally stable. Yet, practically every study on real populations of T7ibolium spp has
shown fairly dramatic oscillations in the numbers of eggs, larvae and pupae (Hastings and
Costantino, 1991). By incorporating age-dependent larval cannibalism of eggs into the model
described by equation 5.3, Hastings and Costantino (1991) show that the parameter space
admitting a stable equilibrium in larval numbers is greatly reduced, as compared to the case

where a constant cannibalism rate is assumed (fig. 5.12).
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FIGURE 5.12. Schematic depiction of the effect of incorporating age-dependent cannibalism of
eggs by larvae in the model of egg-larval dynamics (eq. 5.3). The stability boundary for the
equilibrium number of larvae is depicted for a constant cannibalism rate of 0.024 eggs per larva
per day, and for an age-dependent cannibalism rate rising linearly from 0 at age 0 to a maximum
of 0.024 at about day 12. Parameter values above the curves yield unstable equilibria, causing
oscillations in larval numbers, whereas those below the curves vyield locally stable equilibria
(modified after Fig. 3 in Hastings and Costantino, 1991).
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Indeed, for realistic schedules of age-dependent cannibalism, drawn from empirical studies,
the value of / required to guarantee a stable equilibrium for given values of the other
parameters is shown to drop by one to two orders of magnitude. In other words,
incorporation of age-dependent cannibalism of eggs by larvae into equation 5.3 yields the
prediction that practically all Trzbolium populations should show sustained oscillations in the
numbers of pre-adult stages (Hastings and Costantino, 1991). This model has also been
elaborated to include the pupal and adult life stages (Hastings and Costantino, 1987),
suggesting that increases in adult cannibalism, adult mortality, and the pupal duration are
stabilizing, whereas increases in fecundity are destabilizing.

Opver the years, many different approaches have been used to model Trzbolium population
dynamics. Eatly on, simple discrete models were used to describe the dynamics of adult
numbers in Trbolium cultures (e.g. Crombie, 1946; Leslie 1962). Later, more detailed age-
structured models were also developed, and various modeling approaches were applied to
the question of population growth in T7ibolium. Detailed reviews of the mathematical models
applied to T7ibolinm population dynamics have been provided by Sokoloff (1974), and by
Costantino and Desharnais (1991). Rather than repeat what has been said before, we will
restrict our attention to one model of T7ibolinum dynamics (the ‘LPA’ model of Dennis ez al.,
1995) that has generated really interesting empirical work, and that holds great promise for
future empirical investigation of more complex dynamics problems in ecology. In addition,
we will also touch upon work on Trbolium that has been motivated by viewing stable
equilibria in population ecology in terms of steady state distributions of population size. This
work, too, has interesting implications for possible future experimental work on

demographic stochasticity.
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The Larva-Pupa-Adult (LPA) Model
The LPA model of Dennis ¢ al., (1995) consists of three difference equations tracking
changes in the numbers of feeding larvae (L), post-feeding larvae, pupae and callows (P), and
mature adults (A), respectively. The model includes density-dependent egg cannibalism by
larvae and adults, density-dependent pupal cannibalism by adults, and density-independent
fecundity and larval and adult mortality rates. The model ignores the egg stage altogether and

larvae are, thus, the stage being recruited. The LPA model is written as
Lt+1 = bAt exp (_CeaAt — Gy Lt)’
Pt+1 = Lt (l_/ul) >

A‘Hl

P( exp (_CpaA() + A((l_ /ua) .

The unit of time in the model is 2 weeks, which corresponds roughly to the length of the
larval duration, and half the length of the egg to mature adult developmental period.
Recruitment of larvae at time 7+1 is taken to be proportional to the number of adults at time
t, A, The mean number of larvae recruited per adult in each time interval, in the absence of
egg cannibalism is & (b > 0). The fractions ‘exp(-¢,A)” and ‘exp(-¢,L.)’ are the probabilities of
an egg laid between time 7 and 7+1 surviving cannibalism by .4, adults and L, larvae,
respectively. Cannibalism of larvae by adults is ignored, and, hence, a fraction (1-) of larvae
at time # become pupae at time 7+1. The only cause of pupal mortality is assumed to be
cannibalism by adults, and the probability of a pupa surviving to adulthood in the presence
of A, adults is given by exp(-¢,A). Moreover, because adult life-span is large, in addition to
pupae at time # becoming adults at time #+1, a fraction (1-£,) of adults at time # survive to
remain adults in time 7#+1. This model rests upon an understanding of the laboratory ecology

of Tribolium that has been built up over the years and, consequently, only those factors likely
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to have a large impact on population dynamics enter into the model as parameters. Thus, the
model ignores the relatively weak density dependence of larval and adult mortality, and of
adult fecundity, as well as the limited degree of pupal cannibalism by larvae and larval
cannibalism by adults. The age-dependence of egg cannibalism by larvae is similarly ignored.
Essentially, the LPA model encompasses only density-independent fecundity and larval and
adult mortality, and density-dependent mortality of eggs and pupae due to cannibalism.

The LPA model (egs. 5.5 a-c) is not amenable to an analytical description of stability
properties unless egg cannibalism by larvae is ignored (¢, = 0). In this simplified case, there is
a trivial equilibrium at extinction (I, P, A = 0), which is stable unless & > g /(1-4). If the
latter condition holds, there is one non-negative equilibrium (L, P, A > 0), the stability of
which depends upon fecundity (4), adult mortality (z,), and the ratio of the rates of pupal
and egg cannibalism by adults (¢,,/ ¢,). Depending upon the values of these parameters, the
non-negative equilibrium can be stable or unstable, especially for high values of 4 and 1,
giving rise in the latter case to either stable 2-cycles or aperiodic orbits on an invariant loop.
Numerical analyses reveal a similar range of dynamic behaviors to be present for the full
model that includes egg cannibalism by larvae. A numerically calculated stability portrait of
the full model (eqs. 5.5 a-c), incorporating values of ¢, ¢,, ¢, and g derived by averaging
parameter values estimated for four laboratory populations of the cos (corn-oil sensitive)
strain of 1. castaneum, shows clearly the dynamic outcomes associated with different regions
of b-u, space (fig. 5.13).

It is clear from this stability portrait that for parameter values in the typical range of
Tribolium cultures, the most commonly observed dynamic behavior would be stable 2 cycles,

although extinction, stable point equilibria and loops are also possible (figs. 5.13, 5.14).
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FIGURE 5.13. Schematic depiction of stability boundaries for the LPA model (egs. 5.5 a-c) for
typical parameter values based on ‘overall’ estimates (see table 1) from four laboratory
populations of the cos strain of T. castaneum (modified after Fig. 3 in Dennis et al., 1995).
Asterisks denote the b-z, coordinates of the four populations.

Indeed, the LPA model raises the possibility of fairly complex behaviors, especially when
adult mortality is relatively high. If fecundity is low (~ 4-8 larvae recruited per adult per time
interval in the absence of cannibalism of eggs), there are stable equilibria for a wide range of
adult mortality rates. At very high rates of adult mortality, there is a bifurcation from a stable
fixed point to an invariant loop, leading to aperiodic cycles. For fecundity values of ~ 8-12,
which are often seen in Tribolium cultures, results in a sequence of changes in dynamic
behavior as adult mortality rates increase. At extremely low adult mortalities, there are stable

equilibria, which soon bifurcate to stable 2-cycles. With further increase in adult mortality,
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there is a narrow band of g, values for which stable equilibria and 2-cycles coexist.

Continued increase in 4, again yields a range of values for which only stable equilibria exist,

and, eventually, at high values of s, a bifurcation to invariant loops occurs.

TABLE 5.1. Maximum likelihood estimates of parameters of the stochastic LPA model for the four
control populations of Costantino and Desharnais (1980). The parameter values for the model
fitted to data from all four populations (overall) and a 95% confidence interval, calculated from
profile likelihoods, for these overall parameters are also given (data from Dennis et al, 1995).

Population b W, W, c, ¢, b

A 19.85 0.096 0.473 0.016 0.010 0.020
B 15.49 0.100 0.501 0.013 0.010 0.017
C 5.53 0.148 0.508 0.006 0.007 0.018
D 9.13 0.103 0.565 0.009 0.008 0.017
Overall 11.68 0.111 0.513 0.011 0.009 0.018
(95% c.i.) (6.2- (0.07- (0.43- (0.004- (0.008- (0.015-
22.2) 0.15) 0.58) 0.018) 0.011) 0.021)
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FIGURE 5.14. Simulated time series depicting dynamic behaviors corresponding to the three
regions in the stability portrait of the LPA model (fig. 5.13). Cases A, B, and C represent
parameter values for which the predicted dynamics are stable 2-cycles, stable equilibria, and
aperiodic cycles (loops), respectively. All parameter values other than y, are the same in all three
cases (b = 11.677, g4 = 0.5129, c., = 0.011, cg = 0.0093, c,, = 0.0178), and are based on ‘overall
estimates (see table 1) from four laboratory populations of the cos strain of T. castaneum (data in
Table 1, Dennis et al., 1995).

For values at the higher end of the spectrum of fecundity seen in Tribolium cultures (b ~ 20),
there are stable 2-cycles until adult mortality is quite high, after which there is a zone of

multiple attractors, first 2-cycles along with stable fixed points, and later 2-cycles along with
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invariant loops. For very high values of u, once again the outcome is invariant loops. In
practically all situations where a stable equilibrium exists, moreover, it is approached via
damped oscillations, whose amplitude increases in the case of populations situated near the
boundary between stable equilibria and 2-cycles/invatiant loops. Thus, for fecundity values
of ~8-22, a range which would include most laboratory populations of T7ibolinm, the stability
boundary between fixed points and 2-cycles would, in practice, tend to be somewhat blurred
because of the difficulty in clearly distinguishing between relatively long-lasting transient
oscillations of reasonably large amplitude and genuine stable 2-cycles.

Another issue that needs to be dealt with in the case of real populations is that of
stochasticity in the dynamics, whether environmental (due to fluctuations in model
parameters as a result of random environmental changes over time) or stochastic (due to
intrinsic fluctuations in birth and death rates). The consideration of stochasticity has led to
attempts to define and understand population regulation and equilibria in terms of the long-
term steady-state distribution of population numbers (eg. Turchin, 1995a and references
therein). In the case of Trbolium, modeling the population of adult numbers using a
stochastic variation of the continuous time exponential model that ignores much of the
biology of the pre-adult stages, yields dN/dt = N, (bexp [-cN,]— u#+ oy,), where y,, or
Gaussian white noise, is the derivative of a stochastic function (the Wiener increment) which
is a continuous time equivalent of a discrete random variable with no serial autocorrelations,
the amplitude of whose fluctuations is measured by o (Costantino and Desharnais, 1991).
From this model, the stationary distribution of adult numbers can be determined in several
ways and is approximated by the gamma probability distribution (Costantino and Desharnais,
1991); slightly different formulations also yield the gamma distribution as an approximation

of the stationary distribution of adult numbers in Tribolium (Costantino and Desharnais,
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1981; Dennis and Costantino, 1988; Peters ef a/, 1989). Similarly, a stochastic version of the
LPA model (see eqs. 5.6 a-c, next section) also yields stationary distributions of adult
numbers that are well approximated by a gamma distribution (fig. 5.15), provided the
underlying dynamics are either a stable equilibrium or a stable cycle of relatively small

amplitude (Dennis et al., 1995).
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FIGURE 5.15. Representative examples of the result of fitting a gamma distribution (dotted line)
to observed frequency distributions of adult numbers (filled circles) obtained by simulating the
LPA model with the stochastic components E; (i = 1,2,3) assumed to be normally distributed with
mean 0 and standard deviation 0.3. All parameter values, other than those indicated on the plots,
are those listed in table 1, “overall”. Predicted dynamics for the four cases are (A) stable
equilibrium point, (B, C) stable 2-cycles, and (D) aperiodic cycles. In all cases, both the gamma
and lognormal distributions are consistent with the observed distribution (;(2 test, P > 0.35 in all
cases), whereas the normal distribution (the predicted stationary distribution under some
stochastic birth-death models) does not fit the data (5* test, P < 0.005 in all cases).

At the same time, slight changes in the formulation of stochastic models can also result in

predictions of stationary distributions of adult numbers that follow, approximately, a normal
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or lognormal distribution (fig. 5.15; Desharnais and Costantino, 1982; Dennis and
Costantino, 1988). Thus, especially when the ‘true’ model underlying the dynamics of a
population is not known, and when several models are in at least reasonable agreement with
observed data, the inferential value of being able to fit a particular probability distribution to
observed frequency distributions of adult numbers in an apparent steady state is somewhat
dubious. What is perhaps more interesting is the possibility of using the overall shape of the
distribution of adult numbers to determine whether the population is fluctuating about a
deterministic stable equilibrium point, or if the fluctuations themselves are basically
deterministic in origin, and are merely overlaid by further stochastic noise. The typical
prediction in the former case is for a unimodal distribution of adult numbers, skewed to the
left, whereas in the latter case, bimodal, multimodal, or irregular distributions may be
expected (Dennis and Costantino, 1988). It may also be worthwhile to examine whether
different types of stochasticity are likely to give rise to differing predictions about the nature
of the steady state distribution of adult numbers.
Empirical Evaluation of the .PA Model

In general, there are several complementary ways to empirically evaluate the aptness of a
model as a descriptor of the dynamics of real populations. At the simplest and crudest level,
one can simply ask whether the model fits observed data reasonably well. At a slightly more
rigorous level one may examine the predictive power of the model by fitting it to data from
populations different from those used to estimate the values of model parameters. An even
more rigorous approach is to use the model to predict the dynamic consequences of
particular changes in parameter values, and then test the validity of the predictions using
populations exhibiting those specific constellations of parameter values; such populations

can often be obtained through experimental manipulation of the laboratory ecology of the
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organism, especially in relatively well studied model systems. In the case of the LPA model,
all these approaches have been used, and the overall conclusion is that the model does seem
to provide a good description of the essential features of the dynamics of laboratory
populations of Trzboliuns.

Dennis ef a/ (1995) used 38 week long time series of larval, pupal and adult numbers
from 13 populations of the cos strain of T. castaneum, subjected to different demographic
perturbations, in order to evaluate the LPA model. These data were from experiments
conducted by Costantino and Desharnais (1980), and the complete time series were
published in Desharnais and Liu (1987). The populations were all initiated with 64 young
adults, 16 pupae, 20 large larvae, and 70 small larvae in 20 g of corn oil medium in a half-pint
milk bottle. The numbers of adults, larvae and pupae in each population were recorded every
two weeks and all eggs, larvae, pupae and adults placed into a fresh culture bottle. Four of
the populations served as controls and underwent no perturbation. Of the remaining nine
populations, three populations each were subjected to one of three demographic
perturbations at the tenth week: (1) addition of 100 adults, (ii) removal of all adults, and (iii)
removal of all pre-adult stages. To evaluate the aptness of the LPA model, Dennis et a/
(1995) fitted a stochastic version of the model to data from the four control populations and
obtained both maximum likelthood and conditional least squares estimates of the model
parameters.

The stochastic version of the LPA model (henceforth, SLPA model) includes noise
terms for larval, pupal and adult numbers that are additive on a logarithmic scale, and may be
mutually correlated across life-stages within a given time interval. The noise terms, however,

are assumed to be uncorrelated across time. The SLPA model is, thus, written as

L(+1 = bAt Y (_CeaAt —Cq Lt + Elt) >
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Ru=L Q-u)exp (Ey),

A =[Rexp (=c A) + A(l-u,)lexp (Ey),
where {E1, Ez, E3,} = E,is a random vector with a trivariate normal distribution of mean
vector 0 and variance-covariance matrix 2. Incorporating error terms in a logarithmically
additive manner suggests that environmental stochasticity is being assumed to be
considerably more significant than demographic stochasticity (Dennis ez a/, 1991). In order to
repose greater confidence in the results, parameter values were estimated by both maximum
likelihood methods, which are sensitive to departures from multivariate normality of the
distribution of E, , and least squares methods that are more robust to variation in the
distribution of E, and, moreover, should yield estimates similar to the maximum likelihood
estimates if trivariate normality of E, holds good (Dennis ez a/, 1995).

The parameters for the four control populations, estimated by maximum likelihood
methods (table 5.1), suggest that three of the populations should show 2-cycles, whereas one
should show a stable point equilibrium (fig. 5.13). The conditional least squares and
maximum likelihood estimates were in fairly close agreement, suggesting that the normality
assumption for E, was not grossly violated. The ‘overall’ parameter values, obtained by
titting the SLPA model to data from all four control populations (table 5.1), also fall into the
region of b-u, space where the outcome is stable 2-cycles. The maximum likelihood
estimates of parameter values were then used to fit the LPA model to the data from each of
the four control populations. Analysis of the residuals from this fitting for the functions
L, @,A4), P, (L) and A, (P, A) (eqs 5.5 a-c) also revealed no systematic departure from

univariate normality for either of the three state variables L, ,P, and A, (Dennis e a/, 1995).

The ‘overall’ values were further used to generate one-step forecasts (E[ N, +1| N, N=L, P,
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A) for larval, pupal and adult numbers at each census period for the four control
populations. Comparison of predicted versus observed numbers of individuals showed that
these forecasts were reasonably accurate (Dennis ef a/, 1995). As a further means of testing
the validity of the LPA model as a descriptor of the underlying population dynamics of
Tribolium cultures, Dennis ez a/ (1995) tested the hypothesis that the four populations
represented true replications of a single underlying model. This was done by examining, by
means of a likelihood ratio test, whether the parameters estimated for the four populations
were identical; the test failed to reject the null hypothesis of equality of parameters across the
four populations.

In order to further assess the predictive power of the LPA model, Dennis ez a/ (1995)
used the ‘overall’ parameter values estimated from the four control populations to generate
one-step forecasts for larval, pupal and adult numbers at each census period for the nine
populations subjected to demographic perturbations. The question asked here was whether
the model could successfully predict the dynamics of populations not used for the parameter
estimation. Once again, comparison of predicted versus observed numbers of individuals
showed that these forecasts were reasonably accurate (fig. 5.16). In all the three treatments in
which populations were demographically perturbed at week 10, the one-step forecasts agreed
quite well with the observed numbers in all replicate populations. In general, the agreement
was better for pupal and adult numbers, as compared to that for larval numbers; this may be
a consequence of ignoring age-dependent larval cannibalism of eggs. In the treatment in
which all adults were removed, however, there was a major discrepancy between the
predicted and observed numbers of larvae at week 12, the census period immediately after
the perturbation. The prediction here was of no larvae at week 12, because all adults were

removed at week 10. However, as this was not, strictly speaking, a discrete time culture, there
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would still have been eggs in the medium laid by adults between weeks 8 and 10, prior to
their removal. Consequently, larvae were observed at the week 12 census, contradicting the
prediction. Thereafter, the model again yielded predictions that were consistent with the
observed data on larval numbers. The prediction error analysis also supported the LPA
model in that only moderate departures from normality were observed for the differences
between observed numbers and one-step forecast numbers, and that too in only 10 of the 27

time series (Dennis ez a/, 1995).
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FIGURE 5.16. Data from one representative population (replicate A in the treatment wherein 100
adults were added to the culture at week 10 in the experiment of Desharnais and Liu, 1987)
showing the observed time series for larval (active feeding larvae), pupal (post-feeding larvae,

pupae and callows) and adult numbers, along with the one-step forecasts (E[ Nt+l|Nt LIN=L,P,
A) from the LPA model using the ‘overall’ parameter values given in table 5.1.

Two subsequent studies by R. F. Costantino and co-workers put the LPA model to even
more stringent empirical tests (Costantino ef a/, 1995, 1997; Dennis et al., 1997). In these

studies, parameters of the LPA model were empirically estimated for various Tribolium
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strains, and the ensuing stability portraits were used to predict the effect of altering adult
mortality rate (1) and the rate of pupal cannibalism by adults (¢,) upon the dynamics of
cultures of those strains. Laboratory populations of those strains were then subjected to
experimental manipulation of the values of these two parameters, and the ensuing dynamics
recorded and compared to the predictions. In one study (Costantino ez a/, 1995), 24 cultures
each of two genetic strains of T. castaneurn (RR and SS) were established with 100 young
adults, 5 pupae, and 250 young larvae in 20 g media in a half-pint milk bottle. Every two
weeks for 36 weeks, the larval, pupal and adult stages were censused and all stages, including
eggs, were transferred to a fresh culture bottle. At week 12, 4 populations of each strain were
assigned to each of 6 treatments which differed in adult mortality rates. In these treatments,
adult mortalities of g, = 0.04, 0.27, 0.50, 0.73, and 0.96, respectively, were experimentally
imposed during the census by removing or adding the number of adults required to keep the
post census number consistent with the assigned mortality rate. Four control populations of
each strain, expressing their intrinsic mortality rate, were also maintained. Data for weeks 12
through 36 from two of the replicate populations in each treatment were used for estimating
parameters of the LPA model and developing stability portraits to use for predicting
dynamic behavior at different mortality levels (table 5.2). Data from the remaining two
replicates of each treatment were used for evaluating the model predictions.

The various mortality rates were initially chosen so as to place populations in various
locations (along the g, axis) of parameter space that would yield qualitatively different
dynamic behavior, based upon the stability portrait of the cos strain of 1. castanenm (fig. 5.13)
studied by Dennis ez a/ (1995). However, differences in parameters of the LPA model for the
SS and RR strains (table 5.3) give rise to slightly differing stability portraits, leading to

varying predictions of dynamic behavior at g2, = 0.75, 0.96 (table 5.2).
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TABLE 5.2. Predicted dynamic behavior of cultures of three genetic strains of T. castaneum at
different levels of adult mortality, based on the LPA model.

Adult Mortality cos Strain RR Strain SS Strain
()
control* stable 2-cycles stable equilibrium stable equilibrium
0.04 stable 2-cycles stable equilibrium stable equilibrium
0.27 stable 2-cycles stable 2-cycles stable 2-cycles
0.50 stable equilibrium stable 2-cycles stable 2-cycles
0.73 stable equilibrium stable equilibrium stable equilibrium

close to boundary for  close to boundary for

aperiodicities 2-cycles
0.96 aperiodicities stable equilibrium Aperiodicities close to
close to boundary for boundary for stable
aperiodicities equilibrium

Overall, the observed dynamics agreed qualitatively with the predictions. At g, = 0.04, adult
numbers in both strains approached a stable equilibrium quite rapidly (on a time scale similar

to the controls), whereas larval numbers displayed oscillations for a few weeks longer than
the controls before damping became evident. At g, = 0.27 and 0.50, where the prediction
was for stable 2-cycles, both adult and larval numbers in both strains displayed regular

oscillations that were more pronounced in the case of larvae. Fluctuations in adult numbers
at u, = 0.27 were regular, but of small amplitude, and with some indication of damping,
whereas at g, = 0.50, the adult numbers also displayed sustained oscillations of relatively

large amplitude. For g, = 0.73 the predictions differed between strains.
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TABLE 5.3. Maximum likelihood estimates of parameters of the LPA model for three genetic
strains of T. castaneum.

Parameter cos Strain RR Strain ~ SS Strain
fecundity (b) 11.6772 7.88 7.48
larval mortality (p) 0.5129 0.161 0.267
adult mortality (ou) 0.1108 0.0042 0.0036
egg cannibalism by adults (¢,) 0.0110 0.011 0.009
egg cannibalism by larvae (¢,) 0.0093 0.0138 0.0119
pupal cannibalism by adults (¢,,) 0.0178 0.004 0.004

Data for cos strain are from Dennis et al, (1995), and for the RR and SS strains from Costantino
et al (1995).

The RR strain was in the region of parameter space predicting stable equilibrium, but very
close to the boundary of 2-cycles, and the populations exhibited sustained oscillations in
both adult and larval numbers. The SS strain was predicted to show a stable equilibrium at g,
= 0.73, and the observed data did suggest a damped oscillatory approach to equilibrium in
both larvae and adults. For g, = 0.96, the RR strain was predicted to be in the region of
stable equilibria, but very close to the boundary of the region of invariant loops giving rise to
aperiodic cycles, whereas the SS strain was predicted to be in the region of aperiodic cycles,
but close to the boundary of the region for stable equilibria. Thus, both strains were
expected to show aperiodic oscillations, at least for the relatively short duration of the time
series observed; populations in the stable equilibrium region close to the boundary of
aperiodicities are expected to show aperiodic appearing transients for a fairly long period of
time (Dennis ef a/, 1995). At a qualitative level, this prediction of aperiodic oscillations was
borne out by the data from both strains. Overall, as in the case of the study of the cos strain

by Dennis e a/ (1995), the analyses of time series residuals suggested that the SLPA model
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provided an adequate description of the essential features of the dynamics of the RR and SS
strains of T. castanenm (Costantino et al, 1995).

In another experiment, similar in many ways to the one described above, Costantino ef a/
(1997) examined predicted transitions to chaotic dynamics in greater detail. They used 24
cultures of the RR strain of T. castanenm, each initiated with 250 small larvae, 5 pupae, and
100 young adults in 20 g food medium in a half-pint milk bottle. The adult mortality rate was
experimentally set at 22, = 0.96 for all cultures. All populations were censused and transferred
to fresh medium every two weeks for a total of 80 weeks. Three populations were assigned
to each of eight treatments, in seven of which rates of recruitment into the adult stage
(Pexp(-¢,,A)) were experimentally manipulated so as to yield Crn values of 0.0, 0.05, 0.10,
0.25, 0.35, 0.50, and 1.0, respectively. The eighth treatment was a control. Maximum
likelihood estimates of the parameters of the LPA model were used to generate predictions
of the dynamic behavior expected in each treatment (table 5.4), and the observed dynamics
were compared to the predicted behavior.

In general, the experimental manipulations appeared to have a destabilizing effect.
Compared to the control populations, there was a much greater degree of fluctuation in the

values. The observed time series,

a

populations subjected to experimentally imposed ¢,
nevertheless, were in reasonably good agreement with the predictions. Lyapunov exponents
for chaotic systems are expected to be positive, whereas systems with stable equilibria or
stable periodic cycles are characterized by negative Lyapunov exponents. Systems with quasi-
periodic invariant loops are expected to show a Lyapunov exponent of 0. The estimated
Lyapunov exponents thus can be used to numerically categorize the observed dynamics

(table 5.4).
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TABLE 5.4. Predicted dynamic behavior and estimated Lyapunov exponents of laboratory
populations of T. castaneum subjected experimentally to varying rates of adult recruitment at an
experimentally fixed adult mortality level of 4, = 0.96 (from Costantino et al, 1997; Desharnais et
al, 1997).

Pupal cannibalism by Predicted dynamics Lyapunov exponent
adults (¢,,)
control (0.0047) asymptotic approach to equilibrium -0.0448
0.00 oscillatory approach to equilibrium -0.2989
0.05 stable 8-cycle -0.0257
0.10 quasiperiodic behavior (attractor is an 0.0000

invariant loop)

0.25 chaotic dynamics 0.0245
0.35 chaotic dynamics 0.1029
0.50 multiple attractors: stable 3-cycle, 8- or 0.0665

higher period cycles, chaotic attractors

1.00 stable 3-cycle -0.1871

Data for cos strain are from Dennis et al, (1995), and for the RR and SS strains from Costantino
et al (1995).

A further empirical study evaluating the LPA model, but focusing on the role of
cannibalism, rather than fecundity and adult mortality, as a determinant of dynamics in
Tribolium has recently been reported. Benoit e a/ (1998) manipulated cannibalism rates by
providing refuges to various life-stages in laboratory populations of T. confusum, in order to
assess the role of egg cannibalism by larvae and adults, and pupal cannibalism by adults, in
determining the long-term dynamics of these populations. They established 21 populations
of T confusum, each initiated with 29 adults and 64 large larvae in 110 mL vials containing 20
g flour. The populations were censused every 4 days and shifted to fresh culture vials. A total

of seven treatments (3 populations per treatment), including a control, were imposed on
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these populations for a duration of 284 days (table 5.5). The dynamics of egg, larval and
adult numbers expected in each treatment were predicted by simulations of the LPA model
(table 5), although, strangely, these simulations utilized parameter values estimated by Dennis
et al (1995) for the cos strain of T. castaneum, rather than values for the strain of T. confusum

used in the experiments.

TABLE 5.5. A description of the treatments used by Benoit et al (1998) in their study of the role of
cannibalism in dynamics of laboratory populations of T. confusum. The column on expected
effect on cannibalism depicts the fraction to which each cannibalism rate is expected to be
reduced by the various refuges (an entry of 1.0 suggests cannibalism at typical levels, 0.5
suggests cannibalism reduced to half its typical level, and 0.0 indicates total protection via
refuges, reducing the cannibalism rate to zero). Predicted dynamics are based upon simulations
of the LPA model with systematic changes in c; values, keeping other parameters fixed at values
reported by Dennis et al (1995) for the cos strain of T. castaneum.

Treatment Expected effect on Predicted dynamics
cannibalism

Cea Cel Cpa

No refuge (control) 1.0 1.0 1.0 egg-larval (EL) cycles; logistic population

growth of adults (A)

Partial refuge for eggs 0.5 0.5 1.0 stabilization of EL cycles; logistic growth of
A.

Full refuge for eggs 0.0 0.0 1.0 rapid stabilization of EL cycles; logistic
growth of A.

Partial refuge for eggs, 0.5 1.0 0.5 amplified EL cycles; logistic growth of A to

larvae and pupae higher equilibrium size.

together

Full refuge for eggs, 0.0 1.0 0.0 amplified EL cycles; exponential growth of

larvae and pupae A, at least within the duration of the

together experiment
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Partial refuge for eggs, 0.5 0.5 0.5 stabilization of EL cycles; logistic growth of
larvae and pupae A to higher equilibrium size.

separately

Full refuge for eggs, 0.0 0.0 0.0 rapid stabilization of EL cycles; exponential
larvae and pupae growth of A, at least within the duration of

separately the experiment

In the control populations, no life-stage was protected from cannibalism through a
refuge and the levels of cannibalism (¢; 7 = ¢p, / = a,)) were, therefore, expected to be
unchanged from those typically seen in the cultures. Consequently, these populations were
expected to show typical Trbolium dynamics, with sustained egg and larval cycles, out of
phase with each other (EL cycles), along with logistic population growth of adults, tending
to a stable point equilibrium (table 5.5). In the treatments offering refuge to eggs, either half
(partial refuge) or all (full refuge) of the eggs in the culture were removed to a separate vial at
each census; this was expected to reduce the cannibalism rates on the eggs to 0.5 and 0.0 of
the typical (control) values, respectively, resulting in stabilization of the EL cycles, but
leaving the pattern of adult growth unaffected. Similarly, in the treatments offering refuge to
eggs, larvae and pupae together, half (partial refuge) or all (full refuge) of all three pre-adult
stages were removed to one separate vial at each census. These treatments reduce only
cannibalism of eggs by adults and were, therefore, expected to result in amplified EL cycles.
Reduction of pupal cannibalism by adults to 0.5 of control values was expected to yield
logistic growth of adult numbers to a stable equilibrium size that was higher than that of the
egg refuge treatments. A complete elimination of pupal cannibalism by adults was expected

to free the adult population of density-dependent regulation through the impact of adult
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density on adult recruitment from the pupal population, leading to a prediction of
exponential growth of the adult population, at least for the 284 day duration of the study. In
the last two treatments, either half or all of the individuals of each pre-adult life-stage were
removed to separate vials at each census. These treatments afforded refuge to eggs, as well as
pupae and were, therefore, expected to result in stabilization of EL cycles and either logistic
growth of the adult population to a higher equilibrium size (partial refuge) or exponentially
increasing adult numbers (full refuge).

Temporal variability in the observed time series of numbers of small larvae (< 2 mm;
surrogate for eggs), large larvae, and pupae was assessed by looking at the standard deviation
of log-transformed values of the time series, as well as the amplitude of observed cycles. The

discrete time exponential logistic model A = A _;exp [r(1- A_,/K)] was fit to the adult

time series data, and used to estimate the equilibrium number K in treatments where an
equilibrium adult population size appeared to be attained. To avoid complications arising
due to the presence of transients, only data after day 125 were used in the analyses. Overall,
the observed pattern of effects of the various treatments on the dynamics of small and large
larvae, pupae, and adults was in good agreement with predictions based on the LPA model
(tables 5.5,5.6), with the exception of pre-adult dynamics in the treatments providing partial
or full refuge to all pre-adult stages together in a single container.

The results clearly suggest that adult numbers are controlled primarily by density-
dependent feedback acting via pupal cannibalism by adults (table 5.6). In treatments wherein
pupal cannibalism by adults was reduced (partial refuge for pre-adult stages together or
separately), adult numbers exhibited logistic growth to an equilibrium value higher than that

of controls and treatments with no refuge to pupae.
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TABLE 5.6. Summary of the dynamics of pre-adult and adult stages observed in the different
treatments by Benoit et al (1998) in their study of the role of cannibalism in determining the
dynamics of laboratory populations of T. confusum.

Treatment

Observed dynamics

No refuge (control)

Partial refuge for eggs

Full refuge for eggs

Partial refuge for eggs,
larvae and pupae
together

Full refuge for eggs,
larvae and pupae
together

Partial refuge for eggs,
larvae and pupae
separately

Full refuge for eggs,

cycles in the numbers of small (SL) and large larvae (LL) out of
phase with each other; pupal (P) cycles of smaller amplitude than
SL or LL; logistic population growth of adults (A), attaining an
equilibrium size of ~ 90 adults.

significant reduction in the amplitude of SL, LL, and P cycles
compared to controls; logistic growth of A to an equilibrium of
~ 90 adults.

even greater reduction in the amplitude of SL, L, and P cycles,
but not significantly different from treatment giving partial
refuge to eggs; logistic growth of A to an equilibrium of ~ 150
adults.

cycles in SL, LI numbers of amplitude similar to controls;
reduced amplitude of P cycles; logistic growth of A to
equilibrium size of ~ 250 adults.

cycles in SL, LL. numbers of amplitude similar to controls;
reduced amplitude of P cycles; exponential growth of A,
reaching ~ 2500 adults by the end of the 284 days.

significant reduction in the amplitude of SL, LI, and P cycles
compared to controls; logistic growth of A to an equilibrium of
~ 300 adults..

significant reduction in the amplitude of SL, LL, and P cycles

L. D. Mueller & A. Joshi
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larvae and pupae compared to controls; exponential growth of A, reaching ~ 3250

separately adults by the end of the 284 days.

When pupae were given complete refuge, adult numbers grew exponentially for the duration
of the experiment, reaching levels of several thousand adults. The numbers of small and
large larvae in the control populations exhibited the typical out of phase egg-larva cycles
characteristic of Tribolium cultures, with the amplitude being greater in the case of small
larvae. Densities of small and large larvae were, not surprisingly, highest in treatments
providing full refuge to eggs, and lowest in the controls and in the treatment in which partial
refuge was provided to all pre-adult stages together; in the latter, the eggs were exposed to
the full strength of cannibalism by larvae and also by adults, albeit at a reduced level (table
5.5). The most stable dynamics, based upon reduced amplitude and inconsistent period of
the cycles among replicates, were found in treatments providing full refuge to the eggs from
cannibalism by larvae and adults (full refuge to eggs or to all pre-adult stages separately). The
differences in amplitude of observed oscillations in numbers of small larvae between the
control populations (~ 90% of the mean number), and those given full egg refuge (~8% of
the mean number), were substantial. Other than the fact that the amplitude of observed
cycles was consistently smaller than that of small larvae, the dynamics of large larvae were
similar to, and affected by the various treatments in the same manner, as the dynamics of
small larvae. The effect of different treatments on cycles in pupal numbers was also
qualitatively similar to that seen for numbers of small and large larvae. An exception to
predicted larval dynamics was seen in treatments providing partial or full refuge to eggs,
larvae, and pupae together. In these treatments, eggs would still be subject to cannibalism by

larvae, a factor inducing oscillations in small larval numbers, while being protected from
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cannibalism by adults that tends to stabilize egg-larval cycles in Tribolium. The prediction for
these treatments, consequently, was that the amplitude of cycles in numbers of small and
large larvae should rise as compared to the controls (table 5.5). However, the amplitude of
small and large larval cycles in these two treatments was of the same order as the controls,
although the amplitude of pupal cycles was reduced, compared to the control populations
(table 5.6). This is likely due to either egg cannibalism by adults in the 4 day period between
each census, at which point individuals were transferred to refuges, or density-dependent
reduction of fecundity, because levels of recruitment into the small larval stage remained
fairly constant even though adult density changed substantially.

As stated earlier, analytical results from simple stochastic differential equation based
models, as well as simulations of the SLPA model, predict that the stationary distribution of
adult numbers in Tribolium can be well approximated by the gamma distribution. Indeed, in
many laboratory populations of T. castaneum and I. confusum, this has been the case (Dennis
and Costantino, 1988; Costantino and Desharnais, 1991). The problem, however, is that
often the observed distributions are also consistent with probability distributions other than
the gamma (Costantino and Desharnais, 1991); this situation is exemplified in figure 17.
Moreover, the predicted stationary distribution may vary from species to species based, in
part, upon differences in ecology. For example, iz I. brevicornis, in which adults can delay
pupation of large larvae thereby maintaining a relatively constant pool of recruits into
adulthood, the predicted stationary distribution is normal, and observations are consistent
with that prediction (Desharnais and Costantino, 1982). Thus, both the predictions about the
nature of stationary distributions of adult numbers under different circumstances, and, to an
even greater extent, empirical verification of these predictions, are at present somewhat gray

areas where much further work needs to be done.
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FIGURE 5.17. Results from fitting the gamma (solid line), lognormal (dashed line) and normal
distributions (dotted line) to the frequency distribution of observed steady state adult numbers
(filled circles) in a laboratory population of T. castaneum (data from Dennis and Costantino,
1988). The gamma and lognormal distributions are consistent with the observed data, whereas
the normal distribution is not.

Opverall, then, it seems to be clear that the dynamics of adult numbers in laboratory
populations of Tribolium are largely regulated by adult density-dependent cannibalism of eggs,
serving to regulate recruitment into the juvenile stage, and adult density-dependent
cannibalism of pupae, which, in turn, regulates recruitment from the juvenile stage into the
adult stage. The density-dependence of regulation at both these life-stage transitions is fairly
strong, leading to relatively stable dynamics of adult numbers for typical laboratory
populations. It is also clear that the LPA model of Dennis ez a/ (1995) provides a good
description of Tribolium dynamics, and empirical testing of predictions from this model
support the view that the dynamics of different life-stages in Tribolium cultures are largely

determined by the interplay of fecundity (all else being equal, higher fecundity is
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destabilizing), adult mortality, and the rates of cannibalism of eggs by larvae and adults, and
of pupae by adults. Indeed, the type of detailed and rigorous empirical work that has been
done on the Trbolium model system underscores our argument for the importance of

laboratory systems to research in population ecology.
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CHAPTER SIX

Drosophila

Drosophila has been used as a model organism for research in biology since 1920, and
today it is one of the best genetically characterized multicellular eukaryotes (Pearl and Parker,
1922). More to the point, Drosophila has also been used as a model organism for population
ecology since the 1920s, when Raymond Pearl used Drosophila to find the “laws” which
govern population growth and took particular interest in trying to understand empirically
how intrinsic biological attributes of organisms could lead to density-dependent population
regulation. However, much of the enthusiasm for the universality of the logistic model of
population growth waned as many of the weaknesses of Peatl’s experimental research
became known (Sang, 1949). Coincident with these developments, although perhaps not
because of them, the level of research with Drosophila in population ecology waned in the
1940’s and 50’s. However, starting in the 1950s and continuing on into the 1980s, Drosophila
was again used extensively to study intra- and inter-specific competition and population
dynamics (Moore, 1952 a,b; Miller, 1964 a,b; Ayala, 1966, 1969, 1971; Barker, 1974; Ayala et
al., 1973; Gilpin and Ayala, 1973; Arthur, 1980, 1986). In the past decade or so, the use of
Drosophila in population ecology research has again come down to some degree, although it is
still a very useful model system for such work, as we shall argue. Moreover, Drosophila has
also been used extensively in empirical investigations into the evolution and coevolution of
interspecific competitors, underscoring its role in experimental work at the interface of
population ecology and evolutionary biology (Moore, 1952 b; Futuyma, 1970; Hedrick, 1972;
Sulzbach and Emlen, 1979; Joshi and Thompson, 1995, 1996).

In addition to specific work on population dynamics of Drosophila cultures, much has

been learned about the important basic biology and laboratory ecology of Drosophila since
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1920 (reviewed in Mueller, 1985, 1997). For instance, Chiang and Hodson (1950) established
much of the basic laboratory ecology of Drosophila. In a monumental study, Bakker (1961)
carefully determined the factors affecting competition of Drosophila larvae in food limited
environments. These and many other studies have paved the way for a sophisticated and
detailed understanding of the effects of food, density, and competitors on important life
history traits in Drosophila. that, in part, make it such a useful system for empirical research
in population ecology

In this chapter we review some of this important biological information and discuss how
it can be used to build a detailed model of population dynamics that can then be used to
make predictions about both population stability and life-history evolution. In some cases
these predictions may be tested empirically. The evolution of population growth rates in
Drosophila (Mueller and Ayala, 1981a) opens the interesting possibility that the stability of
populations may also evolve, and we will review experiments aimed at testing this idea.

LIFE-HISTORY OF DROSOPHII.A IN THE LABORATORY

Drosophila has two active life stages, a non-reproductive larval stage and a reproductive
stage as a flying adult. In addition, there is a sedentary pupal stage during which
metamorphosis takes place. From the standpoint of population dynamics, the larval stage is
important for several reasons. First, of course, an individual must survive the larval stage in
order to reproduce. Secondly, both the survival and the fertility of adults is affected by
levels of crowding and nutrition that they experienced as larvae. Below we summarize these
effects by separately considering larvae and adults.

Larvae
If larvae are crowded into a fixed volume with a constant level of resource, survival and

adult size decrease with increasing density (Chiang and Hodson, 1950). These effects can be
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reproduced by keeping the number of larvae constant but decreasing the amount of food
available for the developing larvae (Bakker, 1961) figure 6.1. One interesting phenomenon,
seen in figure 1 and many other studies, is that survival increases rapidly with increasing food
level to its maximum value while adult size increases more slowly and reaches its maximum
value at food levels far above that needed for maximum survival. This effect is believed to be
a reflection of the fact a larva must reach a critical minimum size before it can successfully
complete metamorphosis, even though larvae typically pupate at sizes much larger than this
minimum (Bakker, 1961). As larvae continue to feed beyond this critical point their
additional growth will lead to the formation of larger adults, which, in turn, is likely to
translate into increased female fecundity in the adult stage.

As larvae are crowded, reduced food levels are not the only stress encountered.
Burrowing larvae will inevitably ingest their own nitrogenous metabolic waste products,
largely ammonia, which increases rapidly in crowded larval cultures (Borash et al., 1998).
These ingested wastes have toxic effects that reduce survival (Shiotsugu et al., 1997; Borash
et al., 1998). Thus, the primary stresses placed on a Drosophila larva in a crowded culture are
shortage of food and accumulation of nitrogenous waste, both of which tend to intensify

with time.
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FIGURE 6.1. Female thorax length (open circles) and viability (black circles, males and females)
of the four K-populations described in Mueller et al. (1989) as a function of food level. Thorax
length is highly correlated with adult mass and is used here as a general measure of adult size.
The bars are standard errors.

Bakker (1961) demonstrated that Drosophila larvae compete for limited food through a
scramble type mechanism, and proposed that larvae may exhibit genetically based differences
in rates of food consumption and that the fastest feeders would be the superior competitors.
This notion was supported by observing that larvae demonstrated to be slow feeders could
become successful competitors if given a head start in feeding (Bakker, 1961). Competitive
ability can be assessed by examining egg-to-adult survival of a particular genotype in the
presence of a competitor ss. its survival in the absence of the competitor (Nunney, 1983,
Mueller, 1988b). Burnet et al. (1977) showed that Drosophila larvae whose feeding rates had

been increased by artificial selection were also better competitors. The relationship between
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FIGURE 6.2. Competitive ability vs. larval feeding rates in four K-populations (open circles) and four
r-populations (solid circles). The bars are 95% confidence intervals. Feeding rates (Joshi and
Mueller, 1988) are quantified by counting the number of times the mouth parts of a larva move back
and forth in one minute. Competitive ability (Mueller, 1988a) was measured by assessing the relative
increase or decrease in viability of the wild stock (either the r- or K-populations) in the presence of
larvae homozygous for the white allele.

feeding rates and competitive ability was further strengthened by the observation that larvae
populations maintained at high densities, whose competitive ability had increased due to
density-dependent natural selection (Mueller, 1988a) had also undergone an increase in
feeding rates (Joshi and Mueller, 1988) figure 6.2.

In addition to feeding rate, measured as the number of cephalopharyngeal sclerite
retractions per unit time, larvae also exhibit variation in their foraging behavior in two

dimensions. Sokolowski (1980) has studied this behavior by quantifying the distance
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traveled by a larva while feeding on a flat surface. There appears to be a natural
polymorphism for foraging path length, controlled by a single locus, for (Sokolowski, 1980,
de Belle et al., 1989). Sokolowski has called the phenotypes who travel little while foraging,
“sitters”, and those that travel greater distances, “rovers”. Mutants at the for locus map to the
locus, dg2, which encodes a cyclic guanosine monophosphate-dependent protein kinase
(Osborne et al., 1997). This protein has previously been shown to be involved in a variety of
nervous system functions (Osborne et al.,, 1997). Recently, Sokolowski (Sokolowski et al.,
1997) has shown that the alleles at the for locus respond to density-dependent natural
selection, with the rover type becoming common in populations which have evolved at high
larval densities and the sitter type predominating in populations kept at low larval densities.
However, the precise manner in which foraging path behavior affects fitness components
has not been determined.

After Drosophila larvae have completed their growth they search for a place to form their
pupal case and complete development, thus bringing the feeding phase of pre-adult life to an
end. In the laboratory, pupae generally form on the surface of the food or on the sides of
the vials at some distance from the food surface (this perpendicular distance is typically
called pupation height). The survival of a pupa may be affected by it’s location (Joshi and
Mueller, 1993) figure 6.3. Under crowded larval conditions the food becomes a source of
mortality for pupae on its surface. Large numbers of feeding larvae render the food a soft,
semisolid morass and pupae can get trampled by moving larvae and drown as they slowly
sink into the food. It also appears that mortality is high for pupae located a great distance
from the food surface (fig. 6.3). This leads to a classic form of stabilizing selection in the K-
populations (fig. 6.3), whereas, in the r~populations selection is predicted to be largely

directional since very few pupae travel to the highest positions where viability is low (fig.
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0.3). The shape of the selection function is somewhat irregular and certainly not Gaussian in
shape.

Adults
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FIGURE 6.3. The distribution of pupal heights at high larval density in two populations of D.
melanogaster (Joshi and Mueller, 1993). The fraction of pupae which survive is also shown. In both
populations viability is very low on the surface and at high pupal heights, but nearly 100% of all larvae

survive at intermediate heights. The K-populations are less likely to pupate on the surface and tend
to pupate at greater distances from the surface of the food than the r-populations.

If we postpone consideration of age-structure for the time-being, there are three

important remaining determinants of female fecundity: adult size, adult density and adult
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nutrition. In general, small females lay fewer eggs than larger females of the same age (fig.
6.4). Size may account for roughly a three fold difference in fecundity between the very
smallest females (with a thorax length of about 0.6 mm) and the very largest females (1.1
mm). Since adult Drosophila do not get larger size differences, which are relicts of larval
crowding, represent permanent limitations on maximum female fecundity.

The factors other than size which affect female fecundity may be reversed and may vary
over time and space. As adult Drosophila are crowded there is a decline in female fecundity
but this is most pronounced in flies which have been maintained as adults on low levels of
nutrition (fig. 6.5). The combined effects of adult nutrition and adult crowding may cause a
four-fold difference in daily female fecundity (fig. 6.5). The relationship between female
fecundity and adult density has an important impact on Drosgphila population dynamics and
will be explored more fully in the next section that develops a model of population
dynamics.

In cultures where adults are not segregated from growing larvae, larval density can also
have indirect effects on female fecundity through increased levels of nitrogenous wastes
(Aiken and Gibo, 1979; Joshi et al., 1996; 1998). There are also direct effects of presence of
larvae on fecundity. Food medium with larvae at low densities is preferred as a substrate for
oviposition by female Drosophila, compared to food without any larvae (Del Solar and

Palomino, 1966), whereas high larval densities inhibit fecundity (Chiang and Hodson, 1950).
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FIGURE 6.4. Early female fecundity as a function of female size and age. These data are the
averages of eight populations described in Mueller (1987).

A MODEL OF POPULATION DYNAMICS
We review the model described by Mueller (1988b) which utilizes much of the empirical
information summarized in figures 6.1-6.5. This model uses egg numbers, 7, as the natural
census stage as discussed in chapter 2. Viability from egg to adult is then assumed to be
composed of two parts. A fraction 17 of all eggs are assumed to die due to density
independent causes. The remaining larvae compete for food resources (which total B units)
and survival is density-dependent and given by the function W(177,). It is assumed that food

is consumed in these environments until it is exhausted, at that point the amount of food
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FIGURE 6.5. The fecundity of large, young females as a function of adult nutrition and adult
density. The bars are 95% confidence intervals. The points are the averages of six populations
described in Mueller and Huynh (1994). Fecundity was measured at the six densities shown on
the x-axis. Fecundity at high and low food levels measured at the same density are slightly
displaced to ease the visual presentations of these results.

consumed by individual larvae differs and follows a normal distribution (see fig. 6.6, lower
figure) with a mean of B/(177) and a standard deviation of Bc/(177,). The adult population is
drawn from those larvae that have consumed more than the critical minimum () amount of
food needed to successfully go through pupation. In figure 6.6 these survivors represent the

shaded portion of the curve and the area of this shaded portion is the viability,

WVn,) = [ g(y)dy,

where ¢(y) is the standard normal density function and x = (w"nB1-1)c"1.
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Suppose in the larval population there are several types (these may be genotypes or
different sexes) that differ in their relative competitive ability. Let the competitive ability of
the b type be, ai. For instance, in Mueller (1988b) there were three types corresponding to
the three possible genotypes at a bi-allelic locus. If we know the frequency of each type then
we can also define the average competitive ability. Let this average be . Then, at the time

all the food in the environment has been consumed, the 7z type will have consumed

Q; B(Vnta)_l. If the competitive ability of the 7#) type is greater than the population average,

then these types will consume more food than average and thus will have a greater chance of
surviving and will, on average, be larger than the rest of the population. It is clear from this
formulation that competition is a frequency-dependent process in which benefits to superior

competitors only accrue when inferior competitors are present.
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FIGURE 6.6. The Drosophila population dynamic model. Only larvae which have consumed more
than the minimum required (0.47 mg in the lower figure) survive. The viability of larvae is
indicated by the shaded region in the lower figure. The fecundity of the adult females is
determined by how much food they eat in excess of the minimum requirement and hence their
adult size (see fig. 1). The distribution of female fecundity is determined by the distribution of
larvae which eat more food than the minimum required.

Since the surviving larvae have consumed different amounts of food, some will be large
and some will be small, thereby giving rise to adults of varying sizes (fig. 6.1). From the
distribution in equation (6.1) the average size and hence fecundity, of the surviving females

can be computed from the relationships illustrated in figure 6.1. Thus, the mean fecundity of
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surviving females is a density dependent function given by the area of the top curve in figure

6.6 of,

F(vn,)=W(vn,)*[ f[s(B(ay+1)V n;*)Jo(y)dy.

f(S) is the function which relates adult size (S ) to female fecundity and for the results in

figure 6 and elsewhere it is assumed to be a linear function on a log-log scale,

f(3) = exp(c, + ¢, In(3)),
where the ¢, are empirically determined constants. The size function S(Y) should increase
exponentially with increasing food consumption (Y) to some maximum value. The function

used here will be,

S(¥) = a, +a, {1-exp[-a, (T ~m)]},
where the 4, are also empirically determined constants. However, a0 + a1 should be the
maximum sized female and @ should be the minimum sized female.

The fecundity predicted from F(.) represents the maximum possible given the size of the
female. The number of eggs that females actually lay may be further modulated by levels of
food that are provided to the adults and the density of adults as suggested by figure 6.5. The
amount of food consumed by adults will clearly vary continuously in most populations.
Currently, there are no data which can be used to determine the transition that will be taken
from one curve in figure 6.5 to the other as food levels vary. For the models which follow,
we make the assumption that adult food levels are constant (either very low or at an excess).
This assumption is forced on us by our lack of complete information. Ultimately, in our
experimental research this assumption can be accommodated since we can easily control the

food levels provided to adults in a manner consistent with this assumption.
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The effects of adult density on female fecundity will be modeled by a hyperbolic
function,

bO
1+bN,”’

G(N,) =
where the adult population size, N, is given by W(nV)Vn,, & is the maximum fecundity
reached at low density and /1 measures the sensitivity of fecundity to adult crowding. This
sensitivity to adult crowding is ultimately crucial for determining the stability of Drosophila
populations. Populations that show little sensitivity will tend to lay large number of eggs
even when populations are crowded, a behavior that tends to destabilize the dynamics of the
population. As we can see in figure 6.5, when adults are provided with excess food their
sensitivity to adult crowding is reduced substantially.

We can now combine all the components of the life cycle we have reviewed to produce a

recursion in egg numbers,
N1 =7 G(N,)F(Vn, )W (Vn,)Vn,.

The factor of one-half in equation (6.6) is to account for the fact that only half the adult
population lays eggs. The strength of this model is that the individual components have a
great deal of empirical support. Indeed many of the parameters of the components parts of
equation (6.0) can be estimated directly from these experiments (e.g. like those in figs. 6.1,
6.4 and 6.5) (Mueller et al., 1991). This strength can then be exploited to explore those parts
of the life cycle which are most important to determining population stability (see next
section). However, the liability of this type of model is the large number of parameters it
contains. In addition the interaction of some of these components has not been studied in
sufficient detail. For example, as already discussed the way in which G(IN) varies with food

levels is not known precisely. Moreover, the shape of the hyperbolic functions describing
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G(NN) have not been examined for a range of adult sizes. Equation (6.6) implicitly assumes
that the effects of adult size and adult food levels act independently on final female
fecundity. This same problem was noted with the model developed by Rodriquez in chapter
(3)-

The natural question that arises is what uses are there for a model like (6.6)? The model
can be used as a means of studying how life histories may evolve. Since the model includes
details of the specific life history of Drosophila, its predictions can be directly evaluated.
Mueller (1988b) concluded that density-dependent selection in Drosophila will affect
competitive ability which is directly related to larval feeding rates. This prediction has been
tested and the model of viability (1) was used to determine the appropriate experimental
protocols for measuring competitive ability (Mueller, 1988a). As we will explain in more
detail in the next section the model also provides a qualitative prediction about the types of
environments most likely to result in stable population dynamics of Drosophila. Again these
qualitative predictions can be easily tested. However, it is unlikely that even with the
parameter estimates obtained from the data previously presented, numerically accurate
predictions of population numbers over time can be obtained from equation 06.6.

While some progress can be made determining the analytic conditions for stability of an
equilibrium to equation (6.6) (Mueller, 1988b) these conditions are difficult to interpret. The
major determinants of stability are the sensitivity of female fecundity to adult crowding
(parameter /1) and the levels of larval food (B). Decreasing 41 or decreasing K (fig. 6.7) or
both will tend to move a stable population to cycles and then to chaos. When #; is decreased
females tend to lay many eggs, even in crowded environments. Thus, the populations tend to
overshoot their equilibrium points. The amount of food provided to larvae can be decreased

without decreasing adult resources. Thus, when larval food levels are decreased it becomes
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possible for even moderate sized adult populations to over produce eggs for the meager
amount of food available. This again results in the population overshooting their equilibria

and failing to settle to a stable point.

L.D. Mueller & A. Joshi 6-17



Stability in Model Populations Drosophila

600 -

400 - A

i Ul

320 -

240 -
160 -

80 1

160 1 Decreasing b,

120 - M“
80

40 |

Decreasing B

Egg Numbers

120 -
80 H

40
120 4

80 H

4ZMNWW\MA WWWWWWWN v

0 20 40 60 80 100
Generations

FIGURE 6.7. Population dynamic prediction from the Drosophila model (equation 6.6). The
middle panel shows a stable equilibrium point. As the sensitivity to adult crowding decreases
(decreasing b,) the population moves from a stable point, to a stable cycle to aperiodic behavior
(top panels). As the larval resources decrease (decreasing K) the population also becomes
progressively less stable (bottom panels). The parameter values for the middle figure were: B
(0.06 g), V (0.75), ¢ (0.35 g), m (0.0003 @), a, (0.5 mm), a; (0.623 mm), a, (1700 g), ¢, (6.041
In(eggs)), ¢1 (2.644 In(eggs)mm™), b, (1.06), b, (0.3). The other figures differed as follows: top (b,
=0.03), 2™ from top (b; = 0.1), 2™ from bottom (K = 0.03), bottom (B = 0.01).
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STABILITY OF LARGE LABORATORY POPULATIONS

The basic qualitative prediction is that the most stable populations occur in
environments with high levels of larval food (high B) and low levels of adult food (high 41).
The opposite set of conditions (low B and low &) should produce the least stable
populations. These conditions can easily be experimentally imposed on laboratory
populations of Drosgphila.. Mueller and Huynh (1994) created three different environments
that differed in relative amounts of food provided to larvae and adults. In one populations,
called HH, the larvae and adults received high amounts of food (fig. 6.8, middle graph). A
second population, called HL, was maintained as the HH populations except the amount of
food provided to adults was low (fig. 6.8, top graph), similar to the low food treatment in
figure 6.5. The third population, called LH, was maintained as the HH except the larvae
received half as much food (fig. 6.8, lower graph). The combination of low larval food and
high adult food did produce a significant change in population stability, consistent with the
model predictions.

To quantify the stability of these populations the first order model,

Nt+l

4 20

In( N =a, +a,N;  +a;N ",
t

was fit to each population and the best model according to PRESS was used to estimate the
stability determining eigenvalue. These populations would not be expected to strictly follow
a first order model. However, since there are so few generations of data, fitting higher order

models is hard to justify. The average of the five eigenvalues is shown in figure 6.8.
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FIGURE 6.8. The adult population size in 15 different populations of D. melanogaster (from
Mueller and Huynh, 1994). The middle graph shows the results for populations kept on high
larval and high adult food levels. The populations displayed in the top figure have reduced adult
food levels (i.e. increased b;) relative to the populations in the middle figure. The populations in
the lower figure have lower larval food levels (decreased B) than the populations in the middle
figure and hence decreased stability. The average of the five eigenvalues () is given for each
set of populations. The high level of adult food was simply an excess of live yeast. The low level
of larval food was determined by preliminary test that examined several different levels. The
theory is not sufficiently precise to predict the low food level accurately.
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This analysis suggests that the LH environment is the least conducive to stable population
growth, in accord with the theoretical predictions. Using the least squares estimates for (6.7)
for the three populations with eigenvalues less than -1 (LH;, LH3, and LH4) we can observe
what equilibrium the population converges to. In each case iteration of (6.7) produced an
apparent stable two-point cycle (LHi:(154, 761); LH3:(198, 811); LH4:(453, 827)). The
estimated eigenvalue at these two point equilibria were also less than one in absolute value in
each case (LH1: 0.49; LH3: 0.10; LH4: 0.79).

The results from the analysis by the RSM models are supported by an examination of the
autocorrelation function (fig. 6.9). These results also suggest that the LH populations are at

an even point cycle.
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FIGURE 6.9. The autocorrelation functions for the populations shown in figure 6.8. Each
autocorrelation is the mean of the five replicate populations. The confidence intervals are also
based on these five replicates.

STABILITY OF SMALL LABORATORY POPULATIONS

Although the importance of demographic stochasticity in population ecology has been
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appreciated by theoreticians for at least several decades (e.g MacArthur & Wilson 1967;
Richter-Dyn & Goel 1972; Leigh 1981; Gilpin 1992), most empirical work on population
dynamics has been structured around deterministic models, albeit models of increasing
complexity, taking into account specific details of the field or laboratory ecology of the
species in question. Empirical results have, by and large, shown reasonable agreement with
predictions of the deterministic models, but the data in such studies have typically been
collected from populations large enough to render the effects of demographic stochasticity
on their dynamics unimportant. At the same time, the dynamics of small populations has
been receiving considerable attention in ecology in recent years, especially because of the
heightened awareness of the need for efficient conservation of biodiversity, much of which
is often represented by increasingly smaller populations in an ever more fragmented
landscape (Soulé & Simberloff 1986; Lande 1988; Kareiva 1990; Gilpin & Hanski 1991,
1997). Much of the theory developed for fragmented populations and metapopulations is
also based upon simple deterministic models of local sub-population dynamics. Therefore, it
is of considerable interest to assess whether deterministic models of population growth and
dynamics can adequately capture at least the essential features of the dynamic behavior of
very small populations, or whether we need to explicitly incorporate demographic
stochasticity in an appropriate way into our models of population dynamics in order to make
them applicable to smaller populations.

A recent study of the dynamics of eight small populations of D. melanogaster, maintained
in single 8-dram vials with average size of 75 adults (s.d. = 57.2) (Sheeba and Joshi, 1998),
suggested that the predictions of the Drosophila model of Mueller (1988b) regarding the
effects of LH and HL food regimes hold good even for extremely small populations in

which demographic stochasticity, acting through sex-ratio, birth rate and death rate
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fluctuations, may be expected to be of considerable magnitude. In this study, the linear
logistic, exponential logistic, and hyperbolic models were fit to 11 generations of data on
adult numbers from four populations subjected to an LH food regime, and four to an HL
food regime. Both types of populations exhibited fairly large fluctuations in adult numbers,
although the coefficient of variation of population size in the LH populations was

significantly greater than that seen in the HL. populations.

TABLE 6.1. Estimates of the parameter r of the exponential logistic model for eight small
populations of D. melanogaster, maintained in single 8-dram vials, subjected to HL and LH food
regimes (data from Sheeba and Joshi, 1998).

Replicate population ~ HL food regime =~ LH food regime

1 1.801 3.076
2 1.156 3.002
3 1.838 3.438
4 1.702 2.294

mean (+ 95% ci)  1.624 (£ 0.505)  2.953 (£ 0.761)

Of the three models fit to the data, only the exponential logistic model gave reasonable
fits with the mean R? value for the LH populations (0.65) being significantly greater than that
of the HL. populations (0.29). Estimates of the intrinsic rate of increase r (table 6.1), the
stability determining parameter of the exponential logistic model, were consistent with those
obtained for larger Drosgphila populations subjected to LH and HL food regimes (see chapter
2), and also with the qualitative predictions from the Drosophila model (Mueller, 1988b). In
the HL food regime, all populations exhibited 1 < r < 2, a condition in which the
exponential model predicts an oscillatory approach to a stable equilibrium. In the LH food

regime, on the other hand, » in three populations exceeded 3.0, a value for which chaos is
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predicted, while one population showed r = 2.294, in which case stable 2-cycles are
predicted.

A similar, but more detailed study attempted to examine the impact of stochastic
variation in sex-ratio on the goodness of fit of the exponential model to data on small
populations of D. melanogaster subjected to either HL. or LH food regimes (A. Joshi, V.
Sheeba and M. Rajamani, #npubl. ms.). In this study, sets of 8 populations each were derived
from each of four large (IN ~ 2000 adults) and outbreeding ancestral laboratory populations.
Populations were initiated with 8 males and 8 females allowed to lay eggs for 24 hrs in an 8
dram vial. Four of the populations from each ancestral population were subjected to an LH
regime (3 mL food per vial for larvae, yeast supplement for adults), and four to an HL
regime (10 mL food for larvae, no yeast for adults). A total of 16 HL and 16 LH populations
was, thus, set up.

Each generation, the number of adult males and females present in each population (vial)
was counted on the 215t day after egg-lay. The flies were then placed into a fresh vial with the
appropriate amount of food and allowed to lay eggs for exactly 24 hours, after which the
adults were discarded. The larvae developed and pupated in these vials, and from day 8
through day 18 after egg-lay, any eclosing flies in these vials were collected daily into fresh
vials with ~ 5 mL food in them. Eclosing flies were added daily into these adult collection
vials and every other day all adults collected from a specific population untill that time were
shifted to a fresh vial containing ~ 5 mL food. On the 18th day after egg-lay, the egg vials
were discarded and all eclosed adults of each population transferred to fresh vials containing
~ 5 mL of food with or without a supplement of live yeast paste added to the wall of the
vial, depending upon the food regime. Census data on the number of males and females

present in each population during egg laying were collected for 11 generations. Once again,
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both LH and HL populations showed faitly large fluctuations in numbers (fig. 6.10), but the
mean (£ 95% c.i.) coefficient of variation of population size in the LH populations (0.91 *

0.04) was significantly greater than that seen in the HL populations (0.62 £ 0.04).
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FIGURE 6.10. Time series data on number of breeding adults in 16 LH and 16 HL small
populations of D. melanogaster maintained in single 8 dram vials. Dotted lines represent the
mean equilibrium number of adults (carrying capacity, K in the exponential logistic model),
averaged across all populations in each food regime. Mean number of adults (+ s.d.) was 47.4 £
42.1 in LH populations, and 99.6 + 59.6 in HL populations (Data from A. Joshi, V. Sheeba and M.
Rajamani, unpubl. ms.).

Data on the number of adults in each population over 11 generations were subjected to
time series analysis in order to see if the prediction of the Drosophila model regarding 2-cycles
in the LH regime held true in the face of demographic stochasticity. Linear trends in the
individual time seties were removed, and autocorrelations estimated between the size of each
population at different time lags from 1 to 6 generations. Amplitude spectra for each
population were also computed, using Fourier analyses on data from generations 3 through
10 for each population. The results of these analyses bear out the prediction of the Drosophila
model (fig. 6.11). The LH, but not HL, populations exhibit the alternating pattern of

negative and positive autocorrelations with increasing lag that is characteristic of 2-cycles, as
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well as a distinct peak in the amplitude spectrum corresponding to a frequency of 0.5

(periodicity of 2 generations).
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FIGURE 6.11. Results of time series analyses on the data shown in figure 6.10. Plotted values of
the autocorrelations and fractional contributions of different frequencies are averaged across the
16 replicate populations within each food regime (LH or HL), and the error bars represent 95%
confidence intervals about those means (Data from A. Joshi, V. Sheeba and M. Rajamani,
unpubl. ms.).

The sex-ratio in the LH populations exhibited large fluctuations from generation to
generation with an average coefficient of variation of the fraction of females of 0.24 (95%
ci. = £ 0.04). Although there was no systematic departure from a 1:1 sex-ratio (fig. 12), the
fractions of females observed in the LH populations ranged from 0.2 through 1.0. The HL
populations, on the other hand, showed a consistently female-biased sex-ratio (fig. 6.12): the
mean fraction of females observed was 0.57 (95% c.i. = * 0.2). However, sex-ratio in the
HL populations was significantly more stable than in the LH populations, varying between
extremes of 0.31 and 0.79, with an average coefficient of variation of the fraction of females

of 0.16 (95% c.i. = £ 0.02).
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FIGURE 6.12. Sex-ratio variation in small HL and LH populations. Data points are mean fraction
of females, averaged across 16 replicates of each food regime, and the error bars are 95%
confidence intervals about those means (Data from A. Joshi, V. Sheeba and M. Rajamani,
unpubl. ms.).

Fitting of the exponential model to the data from the LH and HL populations gave
results similar to those seen by Sheeba and Joshi (1998). In order to explore the impact of
sex-ratio variation on the fluctuations in adult numbers, we fitted the exponential model to
the data in two ways, either using adult numbers alone (N4+1 = N,exp [ 7 (K- N,) / K]), ot
using twice the number of females instead of the total number of adults (IN+1 = 2Nf exp [ 7 (
K - (2Nf)) / K]; Nf; = number of females at generation 7). The goodness of fit of the
exponential model to the data for both cases, using N, and 2N/, was assessed through the

coefficient of determination (R?), as well as by looking at the mean absolute value of the

deviations between observed data and one-step forecasts (E[N,,;|N,]), expressed as a

fraction of the mean population size. This measure, henceforth referred to as the coefficient
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n-1 1 n-1

of deviation, D, was calculated as D = EZabs(xi) —Z N, , where 7 was the total number
N N

of generations, and x; = E| Ni+1|Ni ] =N,
It is clear from the mean estimated values of 7 K, R? and D, obtained by fitting the
exponential model to data on total numbers, and twice the number of females, that the mode

of fitting did not have a major impact on the estimates of these various parameters and

measures of fit (table 6.2).

TABLE 6.2. Mean (x 95% c.i.) estimates of the parameters r (intrinsic rate of increase) and K
(carrying capacity) of the exponential logistic model, and of two measures of goodness of fit
(coefficients of determination (R? and deviation (D), respectively), for small populations of D.
melanogaster, maintained in single 8-dram vials, subjected to HL and LH food regimes.
Estimates were made in two ways: by using either adult numbers alone, or using twice the
number of females instead of the total number of adults (data from A. Joshi, V. Sheeba and M.
Rajamani, unpubl. ms.).

Estimated from N, Estimated from 2N/,

LH regime HL regime LH regime HL regime

r 2937 (£0233) 1583 (+0.218) 2898 (£ 0.211)  1.682 (+ 0.112)
K 403 (+3.82) 114.9 (£ 4.18) 40.8 (+ 2.73) 126.6 (£ 5.36)
R 0714 (£0.097) 0283 (+0.113)  0.726 (£ 0.105)  0.398 (+ 0.107)

D 0309 (£0.070) 0352 (£0.034) 0315 (+0.063) 0325 (+ 0.037)

Analyses of variance (ANOVAs) confirmed that food regime (LH or HL) had a significant
effect on estimates of rand K, and on R?, and the pattern of these results was not affected by
how the model was fitted to data (using N, or 2Nf,) (table 6.3). The pattern of ANOVA
results for D was, however, different. When model fitting was done using N, the effects of
block (based on ancestry from a specific population) and the block x food regime interaction

were significant. When model fitting was done using 2Nf, however, none of the ANOVA
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effects was significant (table 6.3). The independence of D from food regime is of some
interest, because R? as a measure of goodness of fit is flawed in this context because it scales
with the parameter 7. In the LH populations, where much of the variation in population size
is deterministically driven, R? is relatively high compared to the HIL populations where,
presumably, a greater proportion of the variation in population size is due to random
fluctuations. The measure D, on the other hand, reflects the average magnitude of deviations

from the model’s predictions as a fraction of the mean population size.

TABLE 6.3. Summary of results of analyses of variance on r, K, R* and D estimated for the 32 LH
and HL populations. In the body of the table the F-statistic (F) of each test and its significance
level (P) are given. Separate analyses were done for estimations based on fitting the exponential
model to data using N; and 2Nf,. Food regime (LH or HL) was treated as a fixed factor crossed
with random blocks based on ancestry. Degrees of freedom (df nhum, df denom) for testing food
regime effects are 1,3; those for the random effects and interactions are 3,24. (data from A.
Joshi, V. Sheeba and M. Rajamani, unpubl. ms.).

r K R2 D
Effect F p F p F p F p
model fitted
using N¢
Block 0.384  0.765 0.005 0.999 1.077 0.378 3.909 0.021
Food Regime 54.664  0.005 738.093 0.0001 19.416 0.022 0.565 0.507
Block x Food 1.475  0.247 0955 0430 1977 0.144 4987 0.008
Regime
Effect F P F P F P F P
model fitted
using 2./NVf,
Block 1.134  0.355 0.299 0.826 1.193  0.333 1.292 0.300
Food Regime 117.520 0.0017 676.389 0.0001 45.938 0.0066 0.140 0.733
Block x Food 1.020  0.401 1.312 0293 0447 0.722 1.055 0.387
Regime

The dependence of K, R?> and D on ris examined more finely in figure 6.13. In LH
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populations, regardless of whether the exponential model was fit using N, or 2Nf,, 7 and K
were negatively correlated (P < 0.01). In the HL populations, » and R? were positively
correlated (P < 0.001 when fit used N, ; P < 0.05 when fit used 2Nf,). All other correlations
were not significant at the 0.05 level. Thus, the scaling of K and R? with » appeared to be

subject to some limitations based on the range of r values examined; why exactly this is so is

not clear.
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FIGURE 6.13. Correlation between the intrinsic rate of increase (r) and the carrying capacity (K),
and the two measures of goodness of fit (R? D). Solid lines are least-squares linear regressions
through data from each food regimexfitting procedure combination (Data from A. Joshi, V.
Sheeba and M. Rajamani, unpubl. ms.).

Overall, the results from this very preliminary study of the dynamics of small
populations suggest that predictions of the Drosophila model (Mueller, 1988b) regarding the
dynamic behavior of populations subjected to LH and HL food regimes are borne out even
in extremely small populations. It is also clear that the extremely simple exponential logistic

model provides reasonable fits to the data (fig. 6.14).
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FIGURE 6.14. Data from one representative population each from the LH and HL food regimes
showing the observed time series of adult numbers (filled circles connected with straight lines),
along with the one-step forecasts based on two ways of fitting the exponential model to the data:

(E[N_;|N,]) (open triangles), and (E[N,,;[2Nf,]) (open squares) (Data from A. Joshi, V.
Sheeba and M. Rajamani, unpubl. ms.).

More interestingly, the goodness of fit of this model to these data seems to be unaffected by
whether or not variation in sex-ratio was corrected for (table 6.2, figs. 6.13, 6.14), even
though sex-ratio in the HL populations was consistently female biased (fig. 6.12). Indeed, the
number of adults in generation # (IN), the absolute deviation of the fraction of females at

generation # from 0.5, and the absolute deviation of observed N1 from the one-step
forecasts (E[ N, +1| N, ]) are mutually uncorrelated (data not shown), further strengthening the

conclusion that sex-ratio fluctuations are not a major contributor to stochasticity in the
dynamics of these small populations. Most likely, then, the bulk of the stochasticity is due to
variation from generation to generation in birth and death rates, partly due to sampling from
a genetically variable population, and partly due to uncontrollable environmental changes.
The practical significance of these results is that (a) we can be confident of manipulating

even very small Drosgphila populations through the food regime so as to obtain populations
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with relatively stable or unstable dynamics, and (b) we can ignore variation in sex-ratio while
studying gross features of the dynamics of such populations. One important implication of
this is that we can use laboratory systems of Drosophila populations to test some of the
predictions from theories of metapopulation dynamics and stability discussed in Chapter 1,
and we will present results from one such study later in this chapter.

ASSESSMENT OF THE DROSOPHII.A MODEL

There are two different types of observations that can be used to assess the Drosophila
model. (1) The quantities that are used to estimate the model parameters can also be used to
evaluate the model in a standard goodness-of-fit type of analysis. (2) The model also yields
predictions about population level behavior that is independent of the estimation process. If
these predictions were accurate this would constitute strong support for the underlying
structure of the model. Under the first category of test we have examined the model
predictions of egg-to-adult viability and average adult size. The model does an admirable job
predicting these quantities (Nunney, 1983, Mueller et al., 1991). In the case of adult size the
model parameters were estimated with one set of experimental data and the predictions were
made for an independent set of observations (Mueller et al., 1991).

The second, stronger set of tests involved examination of (i) the variance in female size,
and (ii) the stability of the population in a LH environment. We have already reviewed the
results of population dynamics in the LH environment for both large and small populations.
The ability of the Drosophila model to correctly predict the qualitative outcome of these
experiments is perhaps the most impressive achievement of the Drosophila model. Mueller et
al, (1991) showed that the variance in female size is correctly predicted by the Drosophila
model at low food levels but is consistently overestimated at high food levels. In all

likelihood this is due to the assumption that food consumption is normally distributed when
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in fact there is probably an upper limit to how much food a larva will consume. At high food
level most larvae probably consume close to the upper limit and thus the variance in size
would be expected to decrease.

On the whole the Drosophila model yields accurate predictions about many important life
history events and population dynamic phenomenon. It could be improved by developing a
more realistic description of larval food consumption and determining the extent to which
there are interactions between larval and adult life histories, e.g. fecundity of different size
females at different adult densities.

STABILITY IN LABORATORY METAPOPULATIONS

We have seen in Chapter 1 that various models of metapopulation dynamics differ in
their predictions regarding the effect of migration on local (sub-population) and global
(metapopulation) stability. In a metapopulation in which individual sub-populations exhibit
relatively large fluctuations in numbers, it is possible that migration could be destabilizing at
the global level by acting as a synchronizing force, tending to bring the various sub-
populations in phase with each other. It is also possible, however, that migration, especially if
density-dependent, could act as a stabilizing force at the local level by damping out
fluctuations in individual sub-populations. In this section we describe results from a study in
which laboratory metapopulations of Drosgphila were used to investigate the effect of density-
dependent migration on local and global dynamics under differing levels of stability in the
local dynamics (A. Joshi and V. Sheeba, unpubl. ms.).

In this study, four metapopulations were initiated from each of four large (IN ~ 2000
adults) and outbreeding ancestral laboratory populations. Each metapopulation consisted of

eight sub-populations maintained in a single 8-dram vial. Each of the four metapopulations
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derived from a specific ancestor was subjected to a particular combination of stability and
migration treatments:

(i) stabilizing HL type food regime, without migration (SW),

(i) stabilizing HL type food regime with migration (SM),

(iti) destabilizing LH type food regime without migration (DW),

(iv)_destabilizing LH type food regime with migration (DM).

Thus, each of the four treatments was applied to four replicate metapopulations derived
from distinct ancestral populations. The experiment, consequently, was of a completely
randomized block type with two fixed factors, stability and migration (each with two levels),
being crossed with blocks based on ancestry. The HL and LH food regimes, and the
maintenance of individual subpopulations, were exactly as described eatlier in this chapter
for the experiment on small population dynamics (A. Joshi, V. Sheeba and M. Rajamani,
unpubl. ms.). BExperimentally imposed migration in the SM and DM treatments was only
among immediate neighbors (fig. 6.15), and was density-dependent according to the
following arbitrarily determined scheme. Any sub-population (vial) with < 40 adult flies at
the time of census would not contribute emigrants to its neighboring vials. If a sub-
population had 41-60 adults, two adult females would be removed from it after the census.
One of these two females would be added to each of the two neighboring vials prior to egg
laying for the next generation. A sub-population with 61-80 adults would contribute two
females to each of its two immediate neighbors, and sub-populations with = 81 adults would
contribute three females to each neighboring sub-population. Immigration into a sub-
population was independent of its adult numbers, and the array of sub-populations was

circularized for purposes of migration (fig. 6.15).
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FIGURE 6.15. Schematic depiction of the layout of the experimental metapopulations used by A.
Joshi and V. Sheeba (unpubl. ms.). Each row of circles represents a single experimental
metapopulation, made up of 8 sub-populations (a..h), at a particular generation. Possible
immigration and emigration patterns are exemplified by the arrows linking sub-populations in the
top row. Each sub-population, depending on its density, can send out or receive migrants only to
or from its immediate neighbors (the array is circularized with respect to migration). The
coefficient of variation of adult numbers in a single sub-population over time (CVjne) is @ measure
of the degree of destabilization of that sub-population, while the coefficient of variation of adult
numbers in all 8 single sub-population in a particular generation (CVgpace) iS @ measure of the
degree of incoherence of the metapopulation at that generation.

The primary interest in this study was to examine the effect, if any, of density-dependent
migration on the stability of local sub-population numbers, the degree of coherence among

sub-populations in numbers, and what effects these may have on the stability of total
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metapopulation numbers. To this end, the degree of destabilization of a sub-population was
measured as the coefficient of variation of the number of adults in that sub-population over
generations (CVime). Similarly, the degree of destabilization of a metapopulation was
measured by the CVime of total adult numbers in the metapopulation over generations. The
degree of incoherence of a metapopulation in any generation was measured as the coefficient
of variation of adult numbers across all eight sub-populations in that generation (CVpace)(fig.
06.15). Larger values of CVpace reflect a situation where fluctuations in numbers in different
sub-populations are more out of phase with each other (greater incoherence).

The fluctuations in the numbers of all types of metapopulations seemed to be reduced in
amplitude with time, suggesting that global (metapopulation) dynamics tended to become
more stable with time across all four treatment combination (fig. 6.16, table 6.4). Results
from analyses of variance (ANOVAs) on CVime of total adult numbers in metapopulations
also supported this conclusion. As expected, D treatments had significantly higher CViime,
over the 12 generations of the study, than S treatments (significant effect of stability: table
6.5, column 1). The stabilization of metapopulation dynamics over time (fig. 6.16) was
reflected in the fact that the CVime, over the last 6 generations of the study was significantly
less than the CVime over the first 6 generations for all treatments (table 6.4, significant effect

of time: table 6.5, column 2). Moreover, the reduction in CVime from the first to last 6
generations was significantly greater in the case of the D treatments (significant stability x

time interaction: table 6.5, column 2).
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time (generations)

FIGURE 6.16. Metapopulation dynamics: time series data on the total number of breeding adults
each generation, summed over all 8 sub-populations, in the four types of experimental
metapopulations (data from A. Joshi and V. Sheeba, unpubl. ms.).

Examining the dynamics of individual sub-populations (fig. 6.17) makes it clear that the

observed stabilization of metapopulation dynamics was likely due to greater incoherence, as
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a result of sub-populations drifting out of phase with one another, rather than any

stabilization at the sub-population level.

TABLE 6.4. Mean (+ 95% c.i.) degree of destabilization (CVyme) in the four types of experimental
metapopulations. The mean degree of destabilization is averaged across all four replicate
metapopulations within a particular treatment regime. The confidence intervals are based upon
least squares estimates of variation among replicate metapopulations, within treatment, in the
mixed-model ANOVAs (data from A. Joshi and V. Sheeba, unpubl. ms.).

Treatment CVime (generations 0-11)  CVime (generations 0-5)  CVime (generations 5-11)

DM 0.439 (& 0.16) 0.794 (& 0.14) 0.249 (& 0.14)
DW 0.615 (£ 0.16) 0.778 (£ 0.14) 0.441 (£0.14)
SM 0.355 (£ 0.16) 0.585 (£ 0.14) 0.376 (£ 0.14)
SW 0.389 (£ 0.16) 0.644 (£ 0.14) 0.368 (£ 0.14)

In fact, the treatment means for CVime over 12 generations, averaged across sub-populations
within metapopulation, and across replicate metapopulations within treatment, indicate that
the M treatments may have had slightly more stable dynamics than W treatments, where no
migration occurred (table 6.6 column 1). This is borne out by the observation of a significant
effect of migration in the ANOVA on sub-population CVime, assessed over the 12
generations of the study (table 6.5, column 3). Examining the treatment means for sub-
population CViime, assessed separately for the first and last 6 generations of the study shows
that, in fact, sub-populations in the D treatments got more destabilized over time, whereas

those in the S treatments became slightly less destabilized over time (table 6.6 columns 2, 3).
Both these effects are significant at the 0.05 level, and give rise to a significant stability x

time interaction in the ANOVA (table 6.5, column 4).
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TABLE 6.5. Summary of results of analyses of variance (ANOVAs) on the degree of
destabilization (CVume) ©0f metapopulations, and individual sub-populations within
metapopulations. Entries are F values for the tests of various effects, with P values in
parentheses. In the ANOVAs done on CV;n assessed over the 12 generations of the study
(columns 1 and 3), stability (S and D treatments) and migration (M and W treatments)were
treated as fixed factors crossed with random blocks. In the ANOVAs done on CV,. assessed
separately over the first and last 6 generations of the study (columns 2 and 4), stability, migration
and time (generations 0-5 versus generations 6-11) were treated as fixed factors crossed with
random blocks. Since each Block x Stability x Migration x Time combination was replicated only
once, random effects and interaction could not be tested for significance, and have been omitted

from the table (data from A. Joshi and V. Sheeba, unpubl. ms.).

CViime for Metapopulations

CViime for Sub-populations

Effect Generations 0-11  Generations 0-11  Generations 0-11 ~ Generations 0-11
overall split overall split
Stability 17.56 (0.0248) 11.05 (0.0449) 87.04 (0.0026) 19973.44
(0.0001)
Migration 4.60 (0.1213) 2.84 (0.1908) 20.07 (0.0207) 9.29 (0.0555)
Time not applicable 1050.25 not applicable 6.56 (0.0832)
(0.0001)

Stability x 1.46 (0.3137) 0.62 (0.4890) 2.18 (0.2367) 0.37 (0.5867)
Migration
Stability x not applicable 30.95 (0.0115) not applicable 41.95 (0.0075)
Time
Migration not applicable 2.40 (0.2188) not applicable 1.92 (0.2597)
x Time
Stability x not applicable 3.87 (0.1438) not applicable 7.04 (0.0768)
Migration
x Time

It is clear from the preceding results that the S and D treatments had the expected effect

on dynamics as predicted from the studies of LH and HL type of small populations
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discussed earlier in this chapter. It is also evident that migration had no effect on overall

metapopulation dynamics, whereas it did have a significant but small stabilizing effect on

local sub-population dynamics.
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FIGURE 6.17. Sub-population dynamics: time series data on the number of breeding adults each
generation in each of the individual sub-populations of one representative metapopulation from
each of the four experimental regimes. Data from all metapopulations are essentially similar to
those depicted (data from A. Joshi and V. Sheeba, unpubl. ms.).

L.D. Mueller & A. Joshi

6-41



Stability in Model Populations Drosophila

Moreover, it appears that metapopulation dynamics became stabilized over time due to
increased incoherence among sub-populations that had drifted out of phase with one
another. This last conclusion is strengthened by examining the behavior over time of the
degree of incoherence in metapopulations (CVpace) in the different treatment combinations.
In both SM and SW treatments, the overall values of CVgpee were relatively low, and
after increasing in the first couple of generations, seemed to level off and fluctuated within a
fairly narrow band thereafter (fig. 6.18). In the DM metapopulations, however, values of
CVspace increased for the first six or seven generations, before leveling off at values that were

about three-fold greater than those in the SM and SW treatments.

TABLE 6.6. Mean (+ 95% c.i.) degree of destabilization (CVyne) in sub-populations of the four
types of experimental metapopulations. The mean degree of destabilization is averaged
sequentially across all sub-populations within a metapopulation, and then across all four replicate
metapopulations within a particular treatment regime. The confidence intervals are based upon
least squares estimates of variation among replicate metapopulations, within treatment, in the
mixed-model ANOVA (data from A. Joshi and V. Sheeba, unpubl. ms.).

Treatment CVime (generations 0-11)  CVime (generations 0-5)  CVime (generations 6-11)

DM 0.969 (+ 0.06) 0.948 (£ 0.16) 1.058 (+ 0.16)
DW 0.993 (£ 0.06) 0.876 (£ 0.16) 1.300 ( 0.16)
SM 0.580 (£ 0.06) 0.612 (£ 0.16) 0.530 (% 0.16)
SW 0.662 (& 0.06) 0.729 (& 0.16) 0.525 (& 0.16)

In the DW metapopulations, values of CVgpce appeared to increase throughout the 12
generations of the study and, towards the last couple of generations were higher than those
seen in the DM metapopulations (fig. 6.18). Linear regressions fitted separately to data on
CVipace versus time for each individual metapopulation were all significant at the 0.005 and

0.001 levels for the DM and DW treatments, respectively. In the SM and SW treatments,
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however, the slopes were much smaller in magnitude (fig. 6.18), and only two of four
metapopulations in each treatment had slopes that were significantly non-zero at the 0.05

level.
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FIGURE 6.18. Degree of incoherence (measured as the CV of sub-population size within a
metapopulation at each generation) over 12 generations in each of the experimental
metapopulations. Solid lines not connecting any symbols are least squares regression lines fit to
data from each metapopulation (data from A. Joshi and V. Sheeba, unpubl. ms.).
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An ANOVA on the slopes of these regressions, treating stability and migration as fixed
factors crossed with random blocks, yielded significant effects of stability (P = 0.003),
migration (P = 0.036) and the stability x migration interaction (P = 0.035). The mean slope
in the S treatments was significantly lower than that in the D treatments, and mean slope in
the M treatments was significantly lower than that in the W treatments, where migration did
not occur. The interaction was driven by the fact that the mean slope did not significantly
differ between the SW and SM treatments (P = 0.698), whereas the mean slope in the DW
treatment (0.16) was significantly greater (P = 0.001) than that in the DM treatment (0.10).

It is clear from the results of this study that several of the differing predictions about the
effect of migration on local and global stability in metapopulations seem to hold good. It is
evident that in metapopulations with relatively unstable sub-population dynamics, increasing
incoherence can stabilize dynamics at the global level, and that even fairly low levels of
migration can be destabilizing at the global level by reducing incoherence among sub-
populations. At the same time, it also appears that migration can play a role in stabilizing the
local dynamics by damping out the amplitude of fluctuations in numbers in individual sub-
populations. This effect was relatively weak in this study, but could perhaps be stronger at
higher levels of migration. These two effects of migration on the degrees of incoherence and
destabilization are contradictory in terms of global metapopulation dynamics because the
former is destabilizing and the latter stabilizing. Overall, in this study, too, migration had no
significant effect on metapopulation stability, perhaps because its effects on incoherence and
destabilization partly cancel out. This is, to our knowledge, the first empirical study of
metapopulation dynamics that attempted to examine the interactions between migration and

local and global stability. This is an area in which much theoretical work has been done, and
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we hope the results from this study will underscore the valuable role that laboratory systems
can play in testing predictions from metapopulation theory.
AGE-STRUCTURED POPULATIONS

Many natural populations, including Drosgphila, consist of adult populations with age-
structure. There has been extensive research on the evolutionary forces that mold the
patterns of age-specific mortality and survival (Rose, 1991; Curtsinger et al., 1995; Mueller
and Rose, 1996). However, there has been little work on the dynamics of Drosophila (or other
species for that matter) with age-structure. One reason for this is that for many species it is
quite difficult to determine the age of individuals. This practical problem has been an
insurmountable hurdle for Drosophila as well.

We have recently developed methods to overcome this problem and have initiated some
preliminary experiments to determine the effects of age-structure on population stability.
The basic problem that we have addressed with these new techniques is the effects of adult
age-structure on the stability of populations maintained in the LH environments. At this
point we have only some suggestive results. However, we will describe these techniques and
do some preliminary analyses of these data since we consider this such an important
problem in population ecology. In addition, the techniques used to study age-structure could
be used with many other insect species and open up new avenues of research in age-
structured populations.

The basic technique involves painting cohorts of adult Drosophila with Testors enamel
paint (diluted with 10% acetone). A small drop is applied to the thorax of the fly with a 0.5
ng syringe (Hamilton, microliter #7000.5). A full syringe provides enough paint to apply to

about 20 flies. Experienced painters can paint about 100 flies in 1 hour. Our preliminary

studies of this technique have suggested that male flies painted by experienced people mate
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FIGURE 6.19. Maintenance of age-structured Drosophila populations. Each rectangle above
represents a half-pint Drosophila culture. The letters above each culture stand for a day of the
week. Every Monday the adult population is transferred to a fresh culture to lay eggs. After 24
hours (on Tuesday) the adults are removed and the numbers in each age-class counted. The egg-
laden culture is then saved for future collections of progeny. On Friday the adult population is again
moved to a fresh culture. However, progeny which have emerged from the egg laying cultures that
are 11, 18 and 25 days old (there are never progeny in the 4-day old culture) are collected, painted
one color and added to the adult population. The dashed lines above indicate the transfer of flies
from one culture to another. The solid lines represent the movement of an entire culture. This
maintenance regime resembles the LH environment since adults are given excess yeast (indicated
by the “Y”) to feed on prior to egg laying and larvae develop in cultures with low levels of food (15
mL).

as often as unpainted flies in female choice experiments. In addition there appears to be no
effect of painting on the longevity of adults. The paint does not come off (although if
applied to the wings we find the wings rip off quickly) and adults are easily scored. The
general protocol for maintaining age-structured populations is outlined in figure 6.19.

The raw data show (fig. 6.20) that the adult population consisted mainly of 1-week and

2-week old adults. Very few flies made it to the third and fourth weeks of adult life. This was
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FIGURE 6.20. Age class numbers in five populations of D. melanogaster maintained by the protocol
outlined in figure 6.19. The first two weeks of the experiment are not included.

due to fairly high mortality among adults caused by the frequent transfers the protocol (fig.
6.19) required. This aspect of the environment can be easily modified but for now we will
analyze the results in figure 6.20 in more detail.

To assess whether these populations are exhibiting any cycling as we saw with earlier
experiments with flies maintained in an LH environment we have performed a spectral
analysis on the five populations in figure 6.20 (fig. 6.21). These results suggest that there may
be a periodic component at 0.16 cycles per week, which corresponds to a period of 6 weeks.
This periodicity is strongest in the total population size. To interpret this observation recall
that the time units in figure 6.21 are weeks not generations as in figure 6.9. After the adult
population has laid eggs the first progeny from these eggs are produced two weeks later but
most emerged during the third week. Since the total population size is composed mostly of

1-week old flies, these progeny have a big impact on total adult numbers. Thus, the bust or
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FIGURE 6.21. The spectral density function estimates for the five populations shown in figure
6.11. The points are obtained from the average spectral density from each of the five
populations. The standard errors are estimated from these five observations also. The series
were zeroed and detrended prior to the analysis. A Hamming window was used with five adjacent
observations (Chatfield, 1989, pg. 116).

boom cycle seen in figure 6.9 that occur with a period of two-generations would appear in
the age structured populations with a period of six weeks, which we have observed here.
Thus, our preliminary result is that the addition of age-structure has not removed the
cycling that was present in the LH-populations without age-structure. The model developed
in chapter 2 (equation 2.16) suggests one reason for this result. That model consisted of only
two adult age-classes and indeed the populations maintained here (fig. 6.20) consisted of
mainly two adult age-classes. If survival from the first adult age-class to the second was low
age-structure did not produce a stable equilibrium point (fig. 2.5). In this experiment the

average survival from the first to the second adult age-class was quite low, 0.24 £0.04 (95%
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confidence interval). Clearly, more work is needed before the role of age-structure in
determining population stability can be fully evaluated. With this experimental system we
would need to run the experiment for a much longer period of time so that
contemporaneous controls (no age-structure) could be run to demonstrate that the LH
environment does produce cycles. Likewise, the techniques would need to be altered (e.g. by
keeping the adults in cages) so that adult survival is increased.

EVOLUTION OF POPULATION DYNAMICS

The evolution of population dynamics has served as one of the earliest unions of
ecological and evolutionary theory. MacArthur (1962) first introduced the idea that the
carrying capacity may be an ecological analog of fitness. These ideas were extended by
MacArthur and Wilson’s (1967) development of - and K-selection theory. The synthesis was
complete with the development, by several people, of formal population genetic theories of
density-dependent natural selection (Anderson, 1971; Charlesworth, 1971; Roughgarden,
1971; Clarke, 1972).

The most important assumption of these models is that fitness is equivalent to per-capita
rates of populations growth. For the simple single-locus versions of these models we know
from population genetic theory that selection will maximize fitness (Kingman, 1961), and
hence population growth rates are maximized. In population growth models, like the logistic,
fitness at high density is closely related to the carrying capacity, and thus we see in one class
of models selection resulting in the maximization of the carrying capacity (Roughgarden,
1976). However, there are several other theoretical settings in which selection does not
necessarily maximize the equilibrium population size (Prout, 1980).

Ultimately, the consequences of natural selection on population growth rates must be

studied empirically. It was with this goal in mind that we undertook a laboratory study of
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FIGURE 6.22. The origin and history of laboratory populations of D. melanogaster used to study
density-dependent selection. Flies caught in nature were brought back to the laboratory and used
to establish 25 new populations which were each homozygous for a different second chromosome
from these wild flies (Mueller and Ayala, 1981d). These lines were kept in the laboratory for about
50 generations before they were crossed to create a genetically variable population which was
used to create three K-populations and three replicate r-populations. After about 198 generations
in the r-regime three new types of populations were created, each replicated three fold. The rxr
populations were created by doing all pair wise crosses of the three r-populations. The progeny of
these crosses were also used to create the rxrK populations. The rxr populations were kept in the
r-environment while the rxrK populations were kept in the K-environment. The rK populations were
derived from each of the three r-populations but were maintained in the K-environment.

density-dependent selection in Drosophila in 1978. The populations used in this study
originated from wild caught populations from Berkeley, California in 1975. The history of
these populations is outlined in figure 6.22.

In keeping with the original formulation of density-dependent natural selection by
MacArthur and Wilson, two environments were created to study the evolution of Drosophila
at extreme densities. The r~environment maintained larvae and adults at low density (Mueller
and Ayala, 1981a). Adults reproduced during the first week of adult life only. Additionally,
the size of the breeding adult ~populations was only 50 for the first 188 generations. After
that time the breeding population size was increased to 500. The K-populations were kept at
high larval and adult densities by culturing the flies with the serial transfer technique (fig.

3.1). In these populations the breeding number of adults was close to 1000 and adults were
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FIGURE 6.23. The per-capita growth rates at four adult densities for populations cultured at low
density (r, rxr) and populations cultured at high densities (K, rK, and rxrK). The bars are standard
errors. The derivation of the various lines is described in the text. The measurements for the r-
and K-populations shown as solid histograms were made after 8 generations of selection. The
measurements for the other populations were made after 223 generations of selection in the r-
environment (see fig. 6.22). The bold numbers are the fitnesses of the K-populations relative to
the appropriate r-population.

permitted to reproduce until they died. There were three independent replicates of each 7~
and K-population.

The first measurements of population growth rates were made after just 8 generations
and showed that at low population densities the growth rates were higher in the 7
populations relative to the K-populations but the reverse was true at high population
densities (fig. 6.23). This genetic differentiation may have been due to genetic changes in

only the rpopulations, only the K-populations or to changes in both populations. To sort
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this out several new populations were created after 198 generations of r-selection (fig. 6.22).
Samples of flies from each of the replicate rpopulations were introduced to the K-
environment, these populations were called 7K’s. After 25 generations population growth
rates were measured in the three replicate »~ and 7K-populations (fig. 6.23). For this
experiment it was reasonable to assume that the 7~populations had changed little in those 25
generations since they had 198 generations to adapt to the laboratory environment. These
results were consistent with the earlier observations, growth rates of the 7K-populations were
depressed at low density but elevated at the high densities relative to the #~populations.

Since the r-populations had undergone many generations of drift at a much smaller
population size than the K-populations, some of these results might be due to the accidental
fixation of deleterious mutants in the r~populations or perhaps the loss of genetic variation

in the rpopulations. The 7rxr populations reintroduced genetic variation into each 7

population by performing all possible crosses between the three ~populations. When the 7xr
populations were moved to the K-environment and allowed to evolve for 25 generations,
changes in population growth rates similar to the 7~ and 7K-populations were observed (fig.
6.23).

The r and K-populations are presumably genetically variable (the experiments with the
rK and <K populations demonstrate this). Thus, the differences in growth rates measured in
figure 6.23 reflect performance averaged over a number of genotypes. These growth rates
can also be used to estimate mean fitness of the 7~ and K-populations. Let A, be the growth
rate of the r~population at a particular density and Ay be the same growth rate for the K-

population. Since a generation in these serial transfer systems is about three weeks the
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3
. . . K .
relative fitness of the K-population can be estimated as, (—/1 ) . These relative fitness values

are shown in figure 6.23. At the extreme densities we see that the mean fitness differences
were between 8% and 53%. Thus, fitness differences between individual genotypes were
probably even greater these values. Fitness differences of this magnitude would result in
strong selection. Given this strong selection it is not surprising that repeated selection
experiments would yield similar results (since the effects of selection would overwhelm
random forces like drift).

All combined these experiments provide compelling evidence that rates of population
growth may respond to selection. Further there are trade-offs involved in this evolution:
populations adapted to crowded conditions do more poorly at low density than populations
adapted to low density conditions and vice-versa. These adaptations to high and low density
have been further dissected. Larvae adapted to crowding show increased competitive ability
for food which is accomplished by increased feeding rates (fig. 6.2; Mueller, 1988a; Joshi and
Mueller, 1988; Guo et al.,, 1991; Santos et al., 1997). These larvae also differ in their two
dimensional foraging behavior. The K-populations are predominantly the rover phenotype
and the r-larvae are predominantly the sitter phenotype (Sokolowski et al., 1997). Larvae kept
at high density also evolve increased pupation height, which reduces mortality among pupae
(tig. 6.3; Mueller and Sweet, 1986; Joshi and Mueller, 1993).

Several earlier studies with Drosgphila had noted that populations newly introduced into
the laboratory and kept near their carrying capacity show a gradual increase on the

equilibrium population size (Ayala, 1965b; Ayala, 1968; Buzzati-Traverso, 1955).
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INBREEDING INCREASES THE RISK OF POPULATION EXTINCTION

A practical application of population dynamic information is to the prediction of the
chance of population extinction (Ewens, et al., 1987; Lande, 1993; Mangel and Tier, 1993,
1994; Ludwig, 1996, 1999). Models of population extinction have shown that an important
component of this probability is the chance of rare catastrophic events and environment
variation. Typically we would expect laboratory studies to shed little light on these quantities
since they are characteristics of specific environments and habitats. However, another
important issue in conservation biology has been the effects of inbreeding on the risk of
population extinction (Allendorf and Leary, 1986; Lande and Barrowclough, 1987; Caro and
Laurenson, 1994). This is especially interesting since many endangered species exist as small
populations that increase the likelihood of matings between close relatives.

With Drosophila we can simultaneously inbreed populations and then determine the
effects on population growth. In fact this sort of experiment was carried out 20 years ago to
address questions unrelated to conservation ecology. Mueller and Ayala (1981d) created 24
populations of D. melanogaster, each homozygous for a different second chromosome
sampled from nature. Since the second chromosome is nearly 40% of the genome these
populations had probabilities of alleles being identical by descent (F) of nearly 40%. In
addition to these 24 inbred population was a single outbred population created by mass

crossing of all 24 inbred populations on three separate occasions.
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FIGURE 6.24.. The probability of population extinction after 1000 generations in 24 inbred
populations (thin-gray lines) and one outbred population (thick-black line) as a function of the
initial population size. These probabilities were computed from the Markov chain model of Ludwig
(1999), assuming the standard deviation of the environmental variation was 0.5, and quasi
extinction occurred at 10 individuals. Population growth for each population was modeled by the
theta logistic equation and parameter values for each line are given in Mueller and Ayala (1981c).

For each of these populations the rates of population growth in the serial transfer system
were estimated over a range of densities (see chapter 3 for additional discussion). We have
used simple first-order difference equations to summarize the asymptotic rates of population
growth at each density (Mueller and Ayala, 1981c). While these rates of growth are
approximations for the true serial transfer system the goal of this analysis is to evaluate the
relative differences between populations rather than achieve a precise numerical estimates of

population extinction.
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To estimate probabilities of extinction we used the Markov chain model developed by
Ludwig (1996, 1999). This model assumes environmental variation that is normally
distributed on a natural log scale of population size. In addition to make the Markov chain
finite an upper bound on population size must be specified. In these calculation we have set
the upper bound at 150% of the carrying capacity. Since the population growth models may
predict sizes greater than this upper bound the growth models are modified to prevent this.
Additionally in the Markov chain probabilities of going from size j to the maximum size in a
single generation also include the probability of going to greater population sizes than the
maximum.

The results (fig. 6.24) show that in general inbreeding leads to a pronounced increase in
the chance of extinction. This is not unexpected since a major conclusion from these studies
was that inbreeding caused severe reductions in population growth rates at low densities,
relative to the outbred population (Mueller and Ayala, 1981d). However, another
observation from the original studies was that there was little difference between the outbred
and inbred populations in rates of population growth at high densities. Nevertheless, we see
that the outbred population still has a substantial advantage at high densities although
slightly reduced (at the lowest starting density there are only two inbred populations with
lower probabilities of extinction while at the higher densities there are six). This is certainly
related to the fact that even if the population starts at a high density, to go extinct it must
pass through some low densities at which point the ability of the population to grow at low
density is crucial. We conclude that for species that don’t normally inbreed there can be
substantial negative effects on long term population persistence due to inbreeding.

This problem has also been studied directly by Bijlsma and his colleagues (Bijlsma et al.,

1997; Bijlsma et al., submitted). In these studies populations of D. mwelanogaster were inbred to
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different levels. Replicate small populations were then followed over time and population
extinction recorded. The results show a clear increase in rates of extinction for inbred
populations. Additionally, environmental stresses like high temperature or ethanol increased
the chances of population extinction much more in inbred populations than in outbred
populations.

EVOLUTION OF POPULATION STABILITY

The experimental research reviewed earlier in the chapter has shown that the stability of
Drosophila populations may be manipulated by varying the levels of food supplied to larvae
and adults. It is therefore possible to create replicate populations of Drosophila which live in
two alternative environments, one conducive to stable population dynamics the other not.
These populations may then adapt to their respective environments and evidence of altered
population dynamics can be obtained. In particular it is of great interest to determine if
populations kept in an environment that causes instability may evolve life histories which
yield stable population dynamics. We are especially interested in evolution by selection at the
individual level (as opposed to some type of group selection mechanism). At the end of
chapter 2 several theoretical models for the evolution of population stability at the individual
level were reviewed. These models develop the plausibility of evolution increasing
population stability but their assumptions are untested.

The r and K-populations described earlier are not the best material for these
experiments for a variety of reasons, including, () low effective population size in the
populations relative to the K’s lead to more rapid loss of genetic variation and fixation of
deleterious mutations (Mueller, 1987). (if) Reproduction at different ages in the »~ and K-
populations, lead to different levels of age-specific selection which may be confounding. (iii)

Density effects on two life-stages (larvae and adults) simultaneously make it impossible to
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Derivation of Experimental Populations

-4 UU-HL
UU's consist of five replicate populations
kept on a three week life cycle at low
U U larval and low adult densities for
43 generations prior to creating
the HL and LH populations.

Each of these
experimental
populations is
B s consist of five replicate populations, kept replicated fivefold
on a two week life cycle for 240 generations to make a total of
at low adult and larval densities prior to twenty populations.

the start of the UU and CU populations.

CU's consist of five replicate populations
kept on a three week life cycle at high
— larval and low adult densities for 71

generations prior to creating
I the HL and LH populatlons

~ UU-LH

CU-LH

FIGURE 6.25. The derivation of twenty Drosophila populations used to study the evolution of
population stability. The B, UU and CU populations are all maintained with breeding populations of
1000-2000 adults.

unambiguously assign selection at a specific life stage to particular types of evolution. To
overcome these problems several new populations were created (fig. 6.25). The CU
populations experience crowding only during the larval life stage (fig. 6.25). The UU’s serve
as controls and are uncrowded during their larval life stage.

The UU and CU populations served as the sources for the populations used to study the
evolution of population stability. Samples from each CU and UU population were placed in
two different environments: the LH environment which tends to produce population cycles
and the HL. populations which tend to give rise to a stable point equilibrium (fig. 6.25).

An important aspect of selection in the LH and HL populations is the potential for
population cycles to cause occasional bottlenecks in the numbers of breeding adults. For

instance in figure 6.8 populations occasionally dip to 60 adults in the LH populations.
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= Maintenance of the LH and HL Populations

Adult flies are collected
l l l I ll l from the cultures daily
—- and added to a
Each population large population cage
consists of eight

until day 20 after eggs
half-pint cultures

were first laid.

After all adults are
collected the flies are

After two days of feeding
given a petri dish
with either excess live

a fresh food plate is
put in the cage and flies
yeast (LH) or 1.5 mL

are allowed to Iay eggs for .
24 hours. These eggs are of a 1.5% yeast
then divided evenly into the solution (HL)

eight cultures, which have a
total of either 15 mL food (LH) or
35 mL of food (HL) per culture

FIGURE 5.26. The life cycle of Drosophila populations used to study the evolution of population
stability (after Mueller et al., in press).

Likewise, in Nicholson’s blowfly experiments population size was reduced to less than 100
breeding adults for short periods of time. These bottlenecks can cause inbreeding depression
which typically reduces female fecundity (Marinkovic, 1967). Since, population stability is
often a function of maximum rates of reproduction at low density, inbreeding may enhance
population stability in a highly fecund species like Drosophila.

Consequently, for these experiments the procedures used in figure 6.8 were altered so
that populations would be sufficiently large that bottlenecks would not reduce total numbers
below 1000 breeding adults. The procedures for maintaining these experimental populations

maintained many of the features of the experimental system used in figure 6.8 but the total
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number of cultures to maintain each population increased about eight-fold (fig. 6.26). This
produced adult population sizes that were typically between 2000 and 6000 (fig. 6.27).

The first assessment of this experiment occurred after 45 generations of selection
(Mueller et al., in press). The conclusions from that examination was that there had been no
evidence that the dynamics of the unstable LH populations about their equilibrium point had
been altered due to 45 generations of selection. However, there was strong evidence of
evolution in these populations in response to density (Mueller et al. ,in press; Joshi et al.,
1999, fig. 6.30). One interpretation of these results is that selection may in fact be taking
place but was insufficient in magnitude to be detected by our methods. There are now a total
of 68 generations of selection completed in the LH and HL populations (figs. 6.27-6.28)
which we present below.

From figures 6.27-6.28 it is clear that the LH populations tend to be larger and all
populations only rarely went below 1000 adults in any single generation. Each generation the
total dry weight of the adults was recorded (fig. 6.29). These data demonstrated that the
adults in the LH populations were much smaller than adults in the HL populations (Mueller
et al., 1999) due to the higher larval densities. In the novel HL environment the CU
populations show a significant increase in numbers of adults over time (fig. 6.27) and a
significant decline in mean size (fig. 6.29; Mueller et al., in press). These changes may reflect
adaptation of the CU populations to the low larval density environments. These changes
could come about from increased egg-to-adult viability that accompanied the declining
feeding rates in these populations (fig. 6.30), since these traits appear to genetically correlated
(Borash et al. 1998, Borash et al., unpublished).

We used a second-order RSM model to estimate the stability determining eigenvalue of

each population,
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IN(Niyq / Ng) =g +a, N +agN2 +a, N +agNIN, .
These results show no consistent trend in the 10 LH populations (table 6.7). In six out of 10
case the magnitude of the eigenvalue decreased. We have also examined the autocorrelation
function in the first and last 15 generations of the experiment. Presumably, evolution that
would affect population dynamics might result in a change in the magnitude or sign of the
correlations over the course of the experiment. The autocorrelations give no suggestion of a
consistent change between the start and end of the experiment (fig. 6.31). Our conclusions
are similar to Mueller et al. (in press) who examined the first 45 generations: there is no
evidence that the stability properties of the LH populations have changed despite evidence

of adaptation to the high and low larval crowding in these environments.
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FIGURE 6.27. The adult population size in the 10 HL populations of D. melanogaster over 68
generations of maintenance by the techniques outlined in figure 6.26.
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FIGURE 6.28. The adult population size in the 10 LH populations of D. melanogaster over 68
generations of maintenance by the techniques outlined in figure 6.26.
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FIGURE 6.29. The average weight per adult in the 10 LH and 10 HL populations of D.
melanogaster over 68 generations of maintenance by the techniques outlined in figure 6.26. The
HL populations are uniformly and significantly heavier than the LH flies, due to the much higher
larval densities in the LH populations. The CU-HL populations show a significant decline in
average size, which accompanies their increase in adult population over the same time period

(see fig. 6.27).
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FIGURE 6.30. The change in feeding rates of the CU-HL and CU-LH populations (top panel) and
the UU-HL and UU-LH populations (bottom panel). Each bar is the mean of the five replicate
populations and the error bars are 95% confidence intervals. Initially there are no differences
between HL and LH populations although the CU populations feed faster than the UU
populations due to their history of high larval densities. With time the feeding rates of the LH
populations exceed that of the HL populations due to the increased larval density in the LH
cultures relative to the HL cultures.
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TABLE 6.7 The estimated stability determining eigenvalue for the ten CU- and UU-LH
populations during the first and last 15 generations of the experiment. In each case the second-
order model (Eq. 6.8) was used with 0 set to 0.5.

Population First 15 (generation 1-15) Last 15 (generation 54-68)
CUy -1.89 -0.78
CU; -0.70 -0.76
CU;3 -0.73 -0.95
CU4 -1.08 -0.63
CUs -0.75 -1.53
UU; -1.43 -0.01
UU: 0.42% -0.80
UU; -0.92 -0.77
UU,4 -0.96 0.37*
UUs -1.12 -0.30

*Complex eigenvalue
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FIGURE 6.31. The autocorrelation of population size variation in the CU and UU-LH populations.
The correlations were determined on the variation in the first 15 generations and the last 15
(generations 54-68) generations. Any linear trends were removed from the series prior to the
calculation of the autocorrelations. The error bars are 95% confidence intervals based on the five
replicate populations.

It is difficult to say precisely why there has been no evolution of population stability. It
seems unlikely that there is no genetic variation for important life history characters in
Drosophila, given the sorts of information we have already reviewed. However, it may be that
the strength of selection on characters that would ultimately affect population stability is

weak and thus difficult to observe even after 68 generations. It may also be possible that the
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characters, which might evolve to change population stability, would then affect other fitness

components negatively and thus don’t evolve.

In any case it is clear from this experiment that one class of environments can cause

unstable dynamics. Over ecologically relevant time spans populations of Drosgphila do not

seem to be capable of changing population stability by adaptation to these particular

environments.

SUMMARY

Models of the dynamics of Drosophila populations suggest that the relative levels of
food to the larval and adult stages will be crucial for the ultimate stability of the
population. The conditions that favor stability are high levels of food for larvae and
low levels of food for adults. Cycles and other departures from stable point equilibria
are predicted to follow when larvae are given low levels of food and adults are given
high levels of food.

The predictions from these models are supported by empirical research with
replicated laboratory populations of D. melanogaster.

Density-dependent natural selection results in adaptations that affect rates of
population growth in D. melanggaster. One of the individual characteristics that
increase in crowded environments is the larval feeding rate.

When Drosophila are kept in environments that result in population cycles, evolution
of traits, like feeding rates, are observed but the stability characteristics of the

populations remained unchanged.
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CHAPTER SEVEN

Natural Populations

This chapter marks a major departure from the others since here we will consider natural
populations rather than model laboratory systems. Natural populations are, in many ways,
are the antithesis of model populations. In nature, environmental factors vary over time and
space, sampling efforts may not be standardized, basic understanding of the role of density
and age-specific effects on mortality and fertility may be lacking, and the impact of other
species — both competitors and predators- may be unknown. We should add that this is not
a comprehensive list of the liabilities of natural populations. Given all this, why should we
bother to study natural populations at all? Certainly, an appreciation for the types of
dynamics observed in natural populations should motivate the questions addressed by
research with model systems. If natural populations were rarely chaotic a great expenditure
of time and energy to uncover when model systems are chaotic would seem pointless.
However, if natural populations were rarely chaotic and model systems were almost always
chaotic some reconciliation of these differences would be warranted. What is clear is that the
factors responsible for the dynamical properties of natural populations may often be difficult
to infer.

Our focus in this chapter will be to review studies that span the range of techniques that
have been discussed so far. Our goal will be to explore the strengths and weaknesses of
these approaches, as applied to natural populations, rather than to be comprehensive in our
review of natural systems. For instance we will not review one of the best documented cases
of population cycling in nature, the lynx-hare system, since it is clearly a predator-prey cycle

and moreover has been reviewed several times previously (Royama, 1992, chapters 5-6).
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Indeed, it may ultimately be the case that many if not most cycles in natural populations arise
from between species interactions.
SIMPLE MODELS
The work of Hassell et al. (1976) was the first major effort to analyze data from many
natural populations and infer their stability behavior. Stability was assessed by obtaining

parameter estimates from the simple discrete time model,

N, = AN (1+aN,)”.
The stability of this model depends on the value of both B and A (see equation 3.1 and
discussion that follows). The parameters @ and B were estimated by regressing “observed
mortality” on N, The “observed” mortality was in fact the quantity log[N, A/ N, ]. Thus,
the obsetved quantities, N, and N, were transformed by the quantity A, which was

estimated indirectly. The base value of A was based on an estimate of maximum fertility.
This maximum fertility was the further reduced by a number of density-independent factors.
For instance in the case of the winter moth Hassell et al. (1976) reduce maximum fertility
after taking into account, (i) mortality between prepupal and adult stages, (ii) mortality due to
the parasitoid, Cyzenis albicans, (iii) mortality due to microsporidian disease, (iv) mortality due
to other larval parisitoids and (v) mortality due to the pupal parasitoid, Cratichneumon culex.

These factors were significant and were responsible for reducing A, in the case of the winter

moth, from 100 down to 5.5. The regressions that gave rise to B treat A as a constant and
therefore do not reflect its uncertainty.

Morris (1990) compared the techniques used by Hassell et al. for estimating the
parameters of equation 1 to two additional techniques. The first additional technique was

similar to the method described above except the mortality was not log transformed. The
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second additional technique used the observed time series to directly estimate the values of
a, B, and A. Interestingly, Morris’s estimates of B and A showed much less precision when
estimated from the time series. We suggest that the high precision obtained by Mottris for his
estimates of A and P by the first two techniques is illusory and a consequence of ignoring the

variability in A as described above. Mottis notes that the parameter estimates and their
confidence intervals are sensitive to the method of estimation. More pointedly we feel this
difference arises by treating uncertain parameters (A) as known constants.

While the approach of Hassell et al. was useful for framing the problem of population
stability their techniques suffer from several other problems. Certainly, there is no need to
restrict these analyses to equation 1. It is also dangerous to restrict the analysis of time series
data to first order equations for the reasons outlined in chapter 2. In all fairness, Hassell et
al. were extremely cautious about the interpreting their results. The techniques developed by
Turchin and Taylor (1992, reviewed next) relax many of these assumptions and thus ought
to be more robust.

The major conclusion by Hassell et al. was that few populations showed cyclic or chaotic
dynamics. Those that did were unusual populations such as agricultural pests (Colorado
potato beetle) or laboratory populations (blowflies). The application of more robust
techniques to natural populations has not completely reversed this view but has nudged
more populations into the cyclic and chaotic regions (Turchin and Taylor, 1992).
Nevertheless, the predominant impression left by Hassell et al. stills remains, most natural
populations appear to fall within the deterministically stable region of dynamical space.

SURVEYS UTILIZING RESPONSE SURFACE METHODS (RSM)
The studies we will review here were pioneered by Turchin and Taylor (1992) and later

extended by Ellner and Turchin (1995). Even within the constraints of working with natural
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populations, there are some studies that yield data that are relatively more amenable to
rigorous analyses. Some of the desirable features of samples from natural populations would
include the following. (1) Samples taken at regular time intervals in the same location. If
samples are taken at regular yearly intervals then there is no need to worry about correlations
between samples that arise due to seasonal variation. If multiple samples per year are taken
then seasonal variation is a potential problem. (2) The effort and techniques used for
collecting census information should be standardized and constant across time intervals.
Unfortunately it is often difficult to determine the quality of census records for natural
populations merely by inspection. If we were looking at counts of eggs laid by a single
female Drosophila in a day for instance, numbers above 200 would automatically signal an
error since this is far above what has ever been observed for fruit flies. Except for negative
numbers there is almost no set of observed population counts whose numerical value would
similarly inform us of erroneous experimental technique. This makes the evaluation of
historical data and published records problematic.

Turchin and Taylor (1992) used both time series analysis and the RSM technique to infer
the behavior of natural populations from their census data, whereas Ellner and Turchin
(1995) focussed on looking for indications of chaotic versus non-chaotic dynamics by
estimating Lyapunov exponents for each population by the RSM technique and several other
regression models. Ellner and Turchin used the RSM technique and several other regression
models to estimate the Lyupanov exponent for each population. The results of these studies

are summarized below (Table 7.1).
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TABLE 7.1. Summary of the dynamical behavior of natural populations studied by Turchin and
Taylor (1992) and Eliner and Turchin (1995).

Dynamical Behavior Population/Species

Chaos Phyllaphis fagi

Quasiperiodicity Lymantria dispar, Zeiraphera diniana, Lynx, Belyak
hare

Stable Cycles Drepanosiphum platanoides

Stable Equilibrium (oscillatory approach)  Hyoicus pinastri, Dendroctonus frontalis, Lymantria
monacha, Bupalus  piniarius, Hyphantria cunea,
Vespula spp., Artic fox, colored fox

Stable Equilibrium (exponential approach)  Choristonenra fumiferana, Dendrolimus pini, Panolis
flammea

Not chaotic Red grouse*, wolverine, martin, muskrat, red &
artic fox, partridge, rabbit, snowshoe hare*,
weasel, Ceroplastes floridensis, Parlatoria camelliae,

Trips imaginis, measles

*one of three tests suggest chaos

Although a relatively greater proportion of the species in Table 7.1 show cycles or chaos
compared to those studied by Hassell et al. (19706), such species are still in a minority. Earlier
analysis of data on the incidence of measles in humans had suggested chaotic dynamics
(Sugihara and May, 1990), a conclusion supported initially by the analysis of Ellner and
Turchin (1995). However, when Ellner and Turchin reanalyzed these data, explicitly
accounting for seasonal variation, they obtained a negative Lyapunov exponent, suggesting

mild stability, rather than chaos. This example underscores the importance of taking into
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account seasonal contributions to observed patterns of variation when data are collected
more frequently than once a year.

Unlike Turchin and colleagues, who have relied on non-linear regression techniques for
providing estimates of model parameters, Dennis and Taper (1994) have used maximum
likelihood techniques. Although of maximum likelihood estimates have many desirable
properties, their application requires knowledge of the statistical distribution of the random
noise, a constraint that does not apply in the case of regression. Dennis and Taper assume
that on a logarithmic scale errors are normally distributed with a common variance
independent of population density. While this sounds reasonable there are few data that can
be used to support these assumptions. Ideally, to test the assumption of a common variance
across densities one should collect independent replicated observations of population
growth at a range of population densities. While this type of data would be difficult if not
impossible to collect in natural populations it has been collected in laboratory populations

(fig. 7.1).
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FIGURE 7.1. The variance of the log of growth rates measured in 23 genetically different
populations of D.melanogaster. Each population was homozygous for a different second
chromosome sampled from nature and is represented by a different symbol. There are occasional
examples of genotypes that affect the variance but there are no consistent differences by density.

The data in figure 7.1 show little effect of density on the variance (on a log scale) of
population growth rates over 23 genetically different populations of Drosophila melanogaster

(Mueller and Ayala, 1981d).
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DETAILED STUDIES OF SINGLE POPULATIONS
In this section, we review a few studies of natural populations that focus on examining the
dynamics of one or a few species for a prolonged period of time. These studies yield a
relatively detailed understanding of the basic biology of the species of interest, an aspect that
makes it possible to appreciate better some of the details of the population dynamics
observed.
Soay Sheep and Red Deer

We first discuss a multi-year study on Soay sheep (Ovis aries) and red deer (Cervus
elaphus) that has successfully yielded a sophisticated understanding of population regulation
(Clutton-Brock, et al., 1997). In this study, population size variation for Soay sheep and red
deer was recorded for about 9 and 20 years, respectively. Although several age-classes were
followed in each population, the fundamental difference between the two species is evident
from data on total numbers (fig. 7.2). The red deer population shows relatively stable
dynamics, with small changes from one year to the next, while the Soay sheep population

shows dramatic oscillations from year to year.
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FIGURE 7.2. The total population census of Soay sheep on the island of Hirta, St. Kilda and red
deer in the North Block of Rum, Inner Hebrides. The symbols show the observed census counts
and the lines are predicted sizes from an age-structured model (after Clutton-Brock et al., 1997).

The effects of crowding on survival and fertility are well documented for these two
ungulates (Clutton-Brock et al., 1997), and this detailed knowledge is ultimately important to
understanding why Soay sheep do not settle down to an equilibrium like the red deer. Soay
sheep, unlike red deer, are capable of producing large numbers of offspring in any year, and
can easily exceed the numbers that can be supported by the environment, giving rise to large
population crashes. The key life-history characteristics that contribute to the population
dynamics differences between these two species are as follows. (i) Female Soay sheep have
offspring in the first year of life, whereas it takes red deer 3-4 years before females
reproduce. Moreover, while Soay sheep may have twins, and red deer almost always give
birth to only one calf at a time. (i) Soay sheep are more likely than red deer to give birth in

consecutive years. Both Soay sheep and red deer females become pregnant in the fall and
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give birth in the spring. However, in Soay sheep, young lambs become independent of their
mothers early in the summer, permitting the females to feed and put on enough additional
weight to support another pregnancy in the fall. Red deer calves continue to feed from their
lactating mothers throughout the summer making it nearly impossible for a single female to
have calves in two consecutive years. (iii) Over winter survival drops precipitously with total
density for Soay sheep but only gradually for red deer.

Ultimately, though, there is no replication of populations in this study. The extent to
which we believe that the observed dynamics are driven by the underling life-history
differences enumerated above rests on the logic of those arguments, not on our ability to
manipulate these factors and repeatedly see the predicted behavior. Nevertheless, the
strength of this system is the ability to carefully document survival and reproduction among
individuals in the population. This permits a more sophisticated understanding of the
population level phenomena by extrapolation from the behavior of individuals.

Clutton-Brock et al. (1997) also suggest that feral populations may be more likely to
exhibit cycles than wild populations due to the artificial selection for high fertility while the
ancestors of the feral animals were in captivity. They add that feral populations are often
established in areas free from predation, potentially exacerbating this effect. The validity of
this generalization may, however, vary across species. Moreover, one would expect that if
domesticated animals released in the wild came back contact with wild populations, then the
domesticated traits would not persist in subsequent generations. After all fertility is always
under strong selection in natural populations. Thus, if fertility in natural populations is below
what can be achieved by artificial selection it is likely due to trade-offs in other fitness

components. However, if feral populations are protected from introgression from natural
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populations, then the conjecture of Clutton-Brock et al. (1977) may be valid, at least for
some species.
Perennial Grass, Agrostis scabra

Tilman and Wedin (1991) studied monocultures of the perrenial grass .Agrostis scabra,
maintained at different levels of soil nitrogen. They recorded live biomass and litter (dead
biomass) yearly, and found that treatments with the highest nitrogen levels exhibited large
and erratic fluctuations in live biomass from year to year that could not be explained by
environmental variation.

The biology of this system suggests that growth of new biomass in any given the current
year is a function of the litter left over from the previous year’s growth. A very dense litter
inhibits growth by intercepting light, and the decay of the litter removes this inhibitory
effect. Decay of the litter is removes the inhibitory effect. A model of the dynamics of live
biomass and litter biomass developed by Tilman and Wedin suggested that at very high
nitrogen levels live biomass could behave chaotically over time. The parameters of the model
were estimated by experimentally varying nitrogen levels and measuring the biomass
produced from those plots. The time series were, however, too short to use to accurately
estimate the model parameters.

For this system there is a time delay of one year between the production of large
amounts of litter and the consequent density-dependent reduction of plant growth. This
delay can ultimately drive the system to cycles or chaos when productivity is very high (e.g. at
soil high nitrogen levels). This experiment, even though the plants were grown outdoors,
conditions were only semi-natural because experimenters controlled seed density, water, and
nitrogen. Indeed the strength of this study lies in the ability of the experimenter to

manipulate aspects of the environment that were important for determining stability.
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Lemmings and 1V oles
Cycles in the dynamics of populations of small mammals have interested ecologists for
more than 70 years (Elton, 1924). There are a number of well-studied natural populations of
small mammals in Northern Europe that have been sampled at regular intervals for extended

periods of time, and we show some of these data in figure 7.3.
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FIGURE 7.3. Population size variation for voles of the genus Clethrionomys. All three populations
are from Fennoscandia, though the population in the bottom panel is from a site further south
than those shown in the top two panels. LA[1’s are the estimated Lyupanov exponent (after Falck
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et al., 1995b), and their values indicate that the populations shown in the top panels may exhibit
chaotic dynamics.

Many explanations for these cycles have been put forward and discussed in the literature
(review by Batzli, 1992) and we will not, consequently, review them here. It is clear that vole
dynamics are affected by a number of predator species in addition to intraspecific
competition. However, there is much less information about the dynamics of these predator
populations and inferences about the dynamics of vole populations are typically made from
single-population time series alone.

The techniques of time series analysis and nonlinear RSM techniques have been applied
to these data by Turchin (Turchin, 1993, 1995b) and Falck et al. (1995a, b). Turchin’s results
suggested that the more northern populations (Norway, Russia) were chaotic, while those
further south (below about 60° latitude) were not. Two northern and one more southern
population are shown in figure 7.3 along with their estimated Lyupanov exponents. These
conclusions have been questioned by Falck et al. (1995a,b). We review the critique of Falck
et al. since it raises some general problems about the RSM techniques and ecological
sampling.

A major criticism by Falck et al. was that the estimated Lyupanov exponents were not
accompanied by estimates of uncertainty in the form of confidence intervals, and this
problem has been acknowledged by Turchin (1995b). Falck et al., used the bootstrap to
simulate new time series from the observed residuals. If the observed time seties is, IN;, N,,
and the nonlinear function, AN, ,, N,,, .., N, ), then associated with each observation

] w

is a residual given by,
& = N¢ - f(Nt—l' N¢ o, Nt—k)-

The residuals are then sampled with replacement to generate a new time series. The

Lyupanov exponent is estimated from the simulated time series and saved. This is repeated
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many times and the replicate Lyupanov exponents can be used to create a confidence
interval. As pointed out by Efron and Tibshirani (1993) this technique is only as good as the
regression model. That is because €, will include observational errors, environmental noise
and lack of fit errors. If this last term is large it will inflate the size of the confidence interval.
In a later paper Falck et al., (1995b) used a different procedure for generating bootstrap
samples that directly sampled neighboring observations. The confidence intervals generated
from neighboring observations were similar in size to the intervals generated from the
residuals. Thus, the results of Falck et al. suggest that estimated Lyupanov exponents tend to
be biased. Positive Lyupanov exponents tend to be too small and negative exponents tend to
be too large. This must be taken into account both when estimating the Lyupanov exponent
and when estimating its confidence interval.

Falck et al. also note that the confidence interval around many of the positive Lyupanov
exponents estimated for the vole data include zero. Therefore, they believe the evidence
overall does not strongly support chaotic dynamics for voles. On the other hand, Turchin
points to the consistent appearance of positive Lyupanov exponents in independent
populations when he suggests there is strong evidence for chaotic dynamics. Turchin’s point
is well taken although the argument ultimately hinges on the extent to which we can consider
multiple natural populations of the same species to be replicates. In the strict sense, such sets
of populations are not replicates since there is no way we can insure that each population
experiences the same environment, predation pressures etc.. The implicit argument here is,
of course, that the major environmental variables affecting dynamics are roughly divided
along a north-south gradient. Thus, any populations above 60° latitude will experience a
“common” environment and, therefore, can be treated as replicates of a common

environmental regime. One notion of the North-South dichotomy had been that generalist
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predators are more important south of about 60° and they have a generally stabilizing effect
on vole dynamics. Turchin’s position is that ultimately the combined forces of intraspecific
competition and predation from generalist and specialist species will make any vole
population north of 60° grow chaotically.

It appears that the differences between the approaches of Turchin and Falck et al. finally
boil down to an argument over the power of replication. Turchin is arguing that the repeated
observation of the same finding bolsters one’s confidence that there is a general set of forces
at work, shaping the dynamics of a set of populations. Falck et al. (1995b) seem to argue
against the benefits of replication when they say that it may be preferable to have a single
time series of 200 data points rather than 10 consisting of 20 points. They seem not to
appreciate that even infinite knowledge of a single population does not permit use to make
any generalizations about population processes. In an attempt to solidify the general
understanding of the vole system Turchin and Hanski (1997) have developed theory to
incorporate the effects of predation and a seasonal environment. Their model assumes that
there are both specialist predators (like weasels) and generalist predators (like foxes, badgers
and feral cats). Moreover, the intrinsic rate of increase of the voles and the specialist
predators varies as a sine wave to reflect seasonality. Under this model the North-South
dichotomy arises because the generalist predators, that have a stabilizing effect on vole
dynamics, are more common in the south.

Turchin and Hanski estimate some of their model parameters from the natural
populations and then use the models to predict dynamics. Although the model does a very
good job predicting the north-south dichotomy in vole dynamics, it will probably take more
empirical information on the various predator populations to confirm the basic correctness

of the model.
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Red Grouse
Red grouse (Lagopus lagopus scoticus) are popular game birds in England and Scotland. The
numbers of birds caught by hunters on different estates have been catalogued for many years
and some of these data have made their way to biologists who were taken by the apparent
cycles that appear in some of these records (Middleton, 1934; MacKenzie, 1952). Time series
analysis of these records demonstrate true cycles in some populations (Williams, 1985). The

flavor of these data can be obtained from one data set from Northern Scotland (fig. 7.4).
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FIGURE 7.4. The number of Red Grouse killed by hunters on an estate in Aberdeenshire,
Northern Scotland (data from Middleton, 1934).

Moss et al. (1996) review the evidence against several hypotheses that have been
proposed for these cycles including predator-prey interactions and high parasite burdens. To

investigate the importance of the number of breeding males, Moss et al (1996)
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experimentally removed males from one population of Red Grouse and compared the
population size variation to an unmanipulated control population. This experiment clearly
showed that male removal prevents the population cycling. The areas in which males were
removed also exhibited a reduction in female numbers. Male Red Grouse hold territories and
females must pair with a territorial male to mate. Although territorial males are sometimes
found without female mates the reverse is not found. Apparently, the removal of males from
a population also results in females leaving the population. The precise mechanism that
affects the breeding success is not known but probably involves the number and age of the
breeding population.
WHY IS CHAOS RARE IN NATURAL POPULATIONS?

The data gathered by ecologists so far suggest that only a small number of natural and
laboratory populations might have chaotic dynamics. Even in the laboratory Tribolium
populations will only be chaotic with constant manipulation of the population by humans.
Yet, many models of population dynamics admit the possibility of chaotic behavior. Why,
then, do we not see chaos more often? This is a question to which the answer is not clear at
this time. It is possible, as some workers have suggested, that life-history evolution through
natural selection on individuals in populations typically results in the evolution of
demographic parameters to values that do not produce chaotic dynamics. Yet, the
preliminary evidence from Drosophila suggests that if such evolution takes place, it is not
rapid. However, the information we have derived from fruit flies also suggests that
population dynamics may vary widely among populations adapted to different density
conditions. In nature, this could translate into wide variation of dynamics over space.
Indeed, the evidence from voles and lemmings also supports this conclusion. It is also

known that isolated chaotic populations do have greater chances of going extinct than
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relatively more stable populations of similar mean size. Consequently, environments that
produce chaotic dynamics for a given species may seldom have viable populations. Thus, as
a matter of sampling we simply do not see many chaotic populations. It should be noted that
these two explanations implicitly invoke different causes for chaotic dynamics. In the former
case, the cause for chaos is assumed to be the genetically determined values of demographic
parameters in the population, whereas in the latter case, chaos is assumed to be due to
environmentally determined values of demographic parameters. This distinction is not
always made explicitly, but needs to be kept in mind whenever one is discussing the
evolution of population dynamic behaviors.

Another possibility is that there are other biological details of populations that reduce
the likelihood of chaotic dynamics. A number of authors (McCallum, 1992; Rohani and
Miramontes, 1995; Ruxton and Rohani, 1998) have suggested that population floors may be
responsible for inhibiting chaos in natural populations. A population floor is simply a
portion of the population that is invulnerable to density-regulation. We may represent this

as

N, = f(Nt—11""Nt—k)+l//s

where y is the invulnerable fraction of the population. One could imagine, \ as representing
a spatial refuge from competition or predation, or a relatively constant source of immigrants
from large external populations. Rohani and Miramontes (1995) and Ruxton and Rohani
(1998) add population floors to a variety of single population growth models and host-
parasitoid models. While adding these floors had the general effect of making chaos more
difficult to reach there were some interesting qualifications. For instance chaos reached by
quasi-periodicity, in these particular models, was more resistant to the effects of population

floors than chaos reached by period doubling.
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At this point in time, all we can say is that our current knowledge of theory and the
biology of populations does not rule out the possibility of populations showing chaotic
dynamics. Indeed several candidate natural populations have been discussed in this chapter.
Yet, only a small minority of populations studied actually seems to exhibit chaotic
behavior. It may be that finding populations with the right life-histories, environments, and

historical accidents to reveal chaos is a rare event.
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CHAPTER EIGHT

Conclusions

A HEURISTIC FRAMEWORK FOR VIEWING POPULATION DYNAMICS AND
STABILITY

In both theoretical and empirical studies in population ecology, two broad categories of
models have been used extensively. At one extreme, there are very simple models, such as
the linear and exponential logistic models (see Chapter 2), with a single difference or
differential equation representing the recursion of adult numbers from one generation to the
next. In these models, all details of the life-history and ecology of the species are subsumed
into a single expression embodying the dependence of adult numbers in one generation
upon the adult numbers in the preceding generation through a humped functional form.
While some of these models may do a reasonable job of capturing gross features of the
dynamics of certain laboratory populations, they ignore many aspects of the biology of the
organism that are known to play a major role in determining vital rates and, through them,
the dynamics of the population. These models typically ignore both stage-structure (i.e. the
division of the life cycle into discrete, ecologically distinct stages like larvae, pupae and
adults), and age-structure within a given life-stage. Thus, they cannot make any distinction
between life-stages that vary in terms of how important their numbers are in terms of
trigeering density-dependent regulatory mechanisms. Similarly, no distinction can be made
between different regulatory mechanisms that exercise their effect by affecting the densities
of different life stages. These distinctions between which life-stages are the triggers and
which the targets of density-regulation, as well as considerations of the magnitude of
ontogenetic delays between the trigger and target life-stages, can have profound effects on

the stability or instability of the ensuing dynamics (Gurney and Nisbet, 1985; McNair, 1995).
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By trigger life-stage, we mean the life-stage whose density is the stimulus for a density-
dependent phenomenon that plays a role in population regulation, and by target life-stage we
mean the life-stage whose numbers are primarily affected by the operation of a particular
density-dependent regulatory phenomenon. The ontogenetic delay between trigger and target
life-stages refers to the time lag between the triggering of a density-dependent regulatory
mechanism and its ultimate impact on the number of individuals in the target life-stage: this
time lag depends upon when in the course of an organism’s life-cycle the target and trigger
life-stages occur. For example, in Drosophila, density-dependent fecundity plays a regulatory
role; here fecundity responds primarily to adult density, and the adult stage, therefore, is the
trigger life-stage. The impact of this density-dependent regulation, however, does not
primarily fall upon the adult stage. The target life-stage for density-dependent fecundity is
the egg stage, whose numbers are primarily affected by the operation of this density-
dependent regulatory phenomenon. It should be noted that the same regulatory mechanism
can have multiple trigger life-stages, but will typically have only one target life-stage.

On the other extreme of the spectrum of population dynamics models, there are detailed
species-specific models that explicitly incorporate many of the relevant details of life-history
and ecology of the species being studies, as was the case with the LPA model for Tribolium
(Dennis e al., 1995) and the Drosophila model of Mueller (1988) discussed earlier. As we have
seen, these models, provide a good understanding of the factors affecting the population
dynamics of a particular species and their predictions have successfully withstood careful and
rigorous empirical testing. At the same time, though, these very detailed and species specific
models do not have much heuristic value. The simple models, on the other hand, have been
of heuristic value in terms of understanding how simple considerations of density-

dependence can give rise to complex dynamics, especially in the presence of time-delays
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between the triggering of density-dependent regulation and its actual impact on population
density (e.g. May and Oster, 1976). Beyond this, however, the simple models also have
limited heuristic value, especially with regard to their ability to provide experimenters with a
conceptual framework within which they can decide which aspects of the ecology and life-
history of their study organism are likely to play a major role in determining population
dynamics, and whether that role is likely to be a stabilizing or destabilizing one. In this
section, we will build upon some ideas outlined by McNair (1995) and try to build a heuristic
framework for viewing the impact of the life-history and ecology of a species on the
dynamics of its populations. We hope that this framework will be especially useful for
experimentalists who need to be able to separate those aspects of the biology that are
relevant to population dynamics from those that have, at best, a small role to play, and who
are, in many cases, not enamored of elaborate mathematical formulations that often seem to
have little bearing on the biology of any real organism.

Using a stage-structured model (eggs, larvae, pupae, adults) with larval food supply being
the critical factor limiting population growth, Gurney and Nisbet (1985) showed that
density-regulation triggered by the number of larvae gives rise to cyclic fluctuations in adult
numbers whose periodicity is strongly affected by whether larval density feed backs upon
itself, or has a regulatory influence on other life-stages. The importance of the relative
positioning in the life-cycle of the life-stages acting as the trigger and target of the density-
dependent regulatory mechanisms was further elaborated upon by McNair (1995), using a
stage-structured model, with overlapping generations and within stage age-structure. In this
model, adult density was fixed as the trigger for density-dependent regulatory feedback. The
target life-stages for the feedback were then systematically varied across the ontogeny, and

the dynamic behavior of the model studied. The results showed that the local stability of the
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equilibrium numbers of adults, and early and late stage juveniles, depended critically on the
interplay between the sensitivity of fecundity and stage-specific mortality to adult density,
and on the life-stage affected by adult-density dependent mortality. In this model, a unique
stable equilibrium for adult and juvenile numbers could always be obtained by the choice of
appropriate values for fecundity and mortality, regardless of the target life-stage of the
mortality, age-dependence or independence of fecundity, and the distribution of maturation
times in the juvenile stage. Once such an equilibrium had been obtained, McNair examined
the effect of varying the degree of sensitivity of fecundity or mortality to adult density. He
found that a local equilibrium could always be destabilized by setting a high enough level of
the sensitivity of fecundity to adult density, giving rise to sustained oscillations in adult and
juvenile numbers, regardless of the target life-stage of density-dependent mortality.
However, when the sensitivity of fecundity to adult density was held at a level that ensured
stability of the equilibrium, and the sensitivity of mortality to adult density was increased, the
effect on the dynamics depended on the target life-stage. Extremely sensitive adult density-
dependent mortality of early juveniles destabilized the equilibrium, giving rise to sustained
cycles, whereas adult density-dependent mortality of late juveniles or adults was not
destabilizing even if sensitivity to adult density was high.

McNair (1995) explained these results on the basis of the ontogenetic time delay between
the triggering of density-regulation and its subsequent feed back upon adult density, when
the target of the regulation was the egg or early juvenile stage. Thus, adult density-dependent
fecundity or early juvenile mortality affect the numbers of eggs, and young juveniles,
respectively. For these effects to have an impact upon adult numbers, which act as the
trigger for density-dependent regulation, takes time (the maturation time of juveniles),

thereby raising the possibility of population cycles if the density-dependence is strong. The

L. D. Mueller & A. Joshi 8-4



Stability in Model Populations Conclusions

effects of the density-dependent regulatory mechanism, thus, must trickle up the ontogeny
before thay can exert feedback on the trigger life-stage. Effects of adult density on either
itself or on late juvenile density, on the other hand, trickle up to the triggering life-stage
much faster, leading to relatively stable dynamics. An important point here is that neither
ontogenetic delays inherent in the life-history (e.g. the delay caused by maturation time of
juveniles), nor the mechanism of density-dependence are, in themselves, the causes of
instability in population dynamics. Rather, it is the ontogenetic time lag between the life-
stages acting as the trigger and target of density-dependent regulation that determines the
nature of the dynamics. For example, in a model similar to McNair’s in many ways, Rorres
(1979) showed that strong density-dependence of fecundity is destabilizing if adults are the
trigger life-stage, and stabilizing if juveniles are the trigger life-stage. Obviously, if juvenile
density triggers regulation of adult fecundity, this effect will trickle up to the trigger (juvenile)
stage much faster than if the trigger life-stage were the adults.

In addition to the identification of the trigger and target life-stages of a species, and their
relative position in the life-cycle, there are other very important aspects of the biology of
species that have an impact on population stability. In addition to any time delays between
the effect of a density-dependent regulatory mechanism on the target life-stage and the
trickling up of that effect to the trigger life-stage, it is also necessary to consider possible
time delays between the triggering of a regulatory mechanism and its effect on the target
stage. For example, if generations are fully discrete, adult density cannot possibly act in a
regulatory manner by feeding back upon juvenile mortality (fig. 8.1), whereas this is easily
possible when generations are overlapping, and may even be destabilizing if the mortality

affects very early stage juveniles (fig. 8.2).
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(A) Adult density triggers regulation (B) Juvenile density triggers regulation
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Figure 8-1 Schematic representation of how stability of a population can be affected by the
interplay between the ontogeny and various possible density-dependent feedback loops,
depicted by thin arrows, in a species in which cohorts are spatially segregated (indicated by a
thick black vertical line separating the juvenile and adult stages), either through a fully discrete
generation life-cycle, or through some other means. The thick black arrows represent ontogenetic
transitions. The effect of juvenile density on adult mortality or fecundity in this case cannot be
direct because of the segregation of life-stages and must, therefore be mediated through
physiological effects on adults of the density they experienced during the juvenile stage. Such an
indirect effect of juvenile density on adult mortality or fecundity involves a long ontogenetic delay.

Similarly, if generations are discrete, and the trigger life-stage are the juveniles, the effect of
juvenile density on fecundity would have to be indirect, through the size of adults being
reduced if they experienced relatively high densities as juveniles (fig. 8.1). Thus, although the
trigger and target life-stages here are the same, juvenile density cannot feedback on itself
rapidly due to the discrete generations. The effect of juvenile density in any generation will
be felt only on the number of juveniles in the subsequent generation, a good example of
what we mean by an “ontogenetic time delay”. This effect would potentially be destabilizing
because the ontogenetic time delay is relatively long. On the other hand, if generations are

overlapping, juvenile density can generate a stabilizing regulatory feed back loop through
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direct inhibitory effects on adult fecundity which then rapidly feed back onto the juvenile
stage (fig. 8.2).

Although the distinction between organisms with discrete versus overlapping generations
provides a contrast that clearly exemplifies the possibility of a time delay between the
triggering of a density-dependent regulatory mechanism and its actual effect on the target
stage, the underlying issue here is of the separation of cohorts in space and time. The
importance of spatial separation of cohorts, although in a somewhat different context, has
also been stressed by Rodriguez (1998), who showed for a system modeled by differential
equations with time delays in density-dependence built in that such delays are destabilizing
only when cohorts overlap in space. The point we wish to stress is that, in a typically fully
discrete generation laboratory system, cohorts do not coexist in either space or time, and
therefore the number of possible regulatory loops is reduced compared to a system in which
generations overlap in both time and space (contrast the number of such loops in figs. 8.1

and 8.2).
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Figure 8-2 Schematic representation of how stability of a population can be affected by the
interplay between the ontogeny and various possible density-dependent feedback loops,
depicted by thin arrows, in a species in which generations overlap and cohorts are not spatially
segregated. The thick arrows represent ontogenetic transitions. In this context, ‘feedback to next
generation’ implies a density-dependent feedback mechanism whose target is at point of
recruitment into the first juvenile stage (eggs or neonates). In such a system, in contrast to one
with spatial segregation of life-stages, juvenile density effects on adult fecundity can be direct
(e.g. high density of juveniles at any point in time can have an inhibitory effect on the fecundity of
the adults in the population at that same time) and can, therefore, give rise to a stabilizing
feedback loop. Note also that adult density-dependent juvenile mortality in such sytems can
produce either destabilizing or stabilizing feedback loops, depending on whether it is the older
(black feedback loop in A) or younger (grey feedback loop in A) juveniles that bear the brunt of
the mortality.

Systems with overlapping generations are often treated, at least for modeling purposes,
as discrete generation systems by an appropriate choice of time units for modeling/census,
as was done in the case of the LPA model of Triboliumz dynamics and in experiments
designed to test it (Dennis ez al., 1995; Costantino ez al., 1995, 1997; Benoit ez al., 1998). Yet,
in terms of what density-dependent regulatory loops are possible, the system may be far
from approximating a truly discrete generation system largely because of lack of segregation

of different life-stages in space and time. Thus, adult beetles were able to cannibalize pupae
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even in the discretized Tribolium systems used by Dennis ef a/ (1995) and Costantino e a/
(1995, 1997), whereas this would be impossible in a truly discrete generation system. Within
the same kind of discretized system, however, when pupae were spatially segregated from the
adults by providing them with a refuge, the stabilizing effect of pupal cannibalism by adults
vanished and adult numbers grew exponentially (Benoit ez a/., 1998).

Another point that we wish to stress is that there is a difference in the possible range of
effects that fecundity and mortality, the two processes through which density-dependent
regulation operates, can have upon the density of the target life-stage. Fecundity basically
causes recruitment into the first (youngest) juvenile stage, and can therefore cause numbers
to increase, whereas mortality affects recruitment either into later juvenile stages or into the
adult stage and can only cause decreases in numbers. The one exception to this is neonate or
egg mortality (e.g. egg cannibalism in T7ibolium), which for all practical purposes implies a
reduction in fecundity, broadly taken here to mean the level of recruitment into the first
juvenile stage. The main implication of the difference between fecundity, in this broad sense,
and mortality, excluding neonate/egg mortality, is that the role of density-dependence of
fecundity and mortality in population regulation depends not just upon their interaction, but
also upon the interplay of the baseline level of fecundity when density is very low, and the
strength of the density-dependent control on fecundity.

This point can be illuminated by analogy with a situation in which a person is trying to
drive a car at a constant speed imposed by the environment in the form of a posted speed
limit. The speedometer conveys information regarding the speed at any point in time, and
the driver can, in principle, regulate speed by a combination of using the accelerator and the
brake. However, the roles of the accelerator and brake are slightly different, even though

both are components of the speed regulating process. The accelerator can be used to either
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increase or decrease speed: in the absence of acceleration, friction will tend to reduce speed.
The brake, on the other hand, can only decrease speed. The accelerator, thus, is analogous to
fecundity, with mortality playing the role of friction, whereas the brake is analogous to
mortality. Now imagine a situation where there is no speed-dependent control on the
accelerator, which is fixed at a certain position. The driver, then, has to regulate speed based
entirely on the brake. In this situation, it is easier to drive at a constant speed if the
acceleration is fixed at a relatively low rather than a high level. The analogy here is with
systems in which mortality is density-dependent, whereas fecundity is density-independent,
but relatively high in one case and low in the other. Similarly, if the braking intensity is to be
fixed at a speed-independent level, maintaining a constant speed will be easiest if base-line
acceleration (at low speeds) is not too high, and if the accelerator is not too sensitive to
speed.

Opverall, when trying to assess the impact of various aspects of life-history and ecology of
a species on population dynamics, one can use this heuristic framework to evaluate the
potential effects of different biological factors and processes on stability and dynamics by
examining how they map onto the ontogeny, and whether or not they are likely to directly
affect recruitment into the first juvenile stage. Some of the major questions that need to be
addressed in any such attempt at integrating life-history and ecology into a cohesive picture
of how their interaction will determine the dynamics of a population are:
e Are generations discrete or overlapping? If generations overlap, are cohorts segregated in

space?
e What kinds of interactions exist among life-stages? Which life-stages are likely to be the

triggers of density-dependent regulatory mechanisms? Often the trigger stage will be the

stage that is the primary consumer of resources.
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e Which life-stages are the likely targets of the density-dependent regulatory mechanisms?
If the target is the first juvenile stage, does the regulatory mechanism act primarily
through fecundity or mortality?

e How do the trigger and target map onto the ontogeny, especially in the context of
whether cohorts are spatially segregated or not? What are the time delays between
triggering of a regulatory mechanism and its effect on the target, and between the effect

on the target and its final effect on the triggering life-stage?
e If fecundity or mortality are density-independent, what is their magnitude?

e What is the census life-stage? If this stage is not the trigger life-stage, how does it map
onto the ontogeny, relative to the trigger life-stage, and the first juvenile stage to which
recruitment is governed through fecundity?

Another point that must be taken into account when evaluating if a particular feedback
loop is likely to have stabilizing or destabilizing effects on the dynamics of numbers of a
particular life-stage, is whether the system has discrete or overlapping generations. The
reason is that the stabilizing or destabilizing nature of a feedback loop is a relative notion. In
the context of overlapping generations, a particular feedback loop involving an ontogenetic
time delay between the triggering of a regulatory mechanism and its effect trickling back up
to the trigger life-stage, can be destabilizing by inducing periodicity into fluctuations of the
numbers of the census life-stage, especially if the delay is greater than the between-census
time interval. The same feedback loop, in a discrete generation system, could have a
stabilizing effect on the numbers of the same census life-stage because here a delay is anyway
inherent in the system. Indeed, a discrete generation system is, in one sense, a system with

overlapping generations that shows a strong periodicity in adult numbers, equal to the

L. D. Mueller & A. Joshi 8-11



Stability in Model Populations Conclusions

development time, with minima in adult numbers being equal to zero (Gurney and Nisbet,
1985).

The important issues listed above should not be considered in isolation; real populations
will often have multiple census, trigger, and target life-stages, as we shall see in the next
section. Nevertheless, we feel that the conceptual framework outlined in this section is of
value because it allows us to evaluate systematically the various aspects of the life-history and
ecology of a species in a manner that will be helpful in deciding which effects are likely to
play a major role in determining the stability of the system.

L. CUPRINA, TRIBOLIUM AND DROSOPHIL.A COMPARED

In this section, we will take another look at what is known about population dynamics
and stability in the two best studied model systems, Trbolinm and Drosophila, and compare
them in the light of the framework discussed above, highlighting similarities and differences
in the way in which population growth is regulated in the two systems. We will also briefly
discuss the third system we looked at earlier, I.. cuprina, as an interesting contrast to both
Tribolium and Drosophila. Concentrating on the latter two systems for the time being, it is clear
that Tribolium cultures are relatively more stable with regard to adult numbers as compared to
Drosophila cultures of about the same size subjected to a stabilizing food regime. For
example, in the four control populations of T7ibolium used by Costantino and Desharnais
(1980), the mean number of adults was ~100, and the coefficient of variation of adult
numbers over time was 0.21. By contrast, the mean number of adults in small Drosgphila
populations subjected to the stabilizing (HL) food regime was also ~ 100 but the coefficient
of variation of adult numbers was 0.62 (A. Joshi, V. Sheeba and M. Rajamani, wnpubl. ws).
There are other differences between these two systems as well (fig. 8.3). It should be noted

that figure 3 represents the ontogeny and life-history of typical laboratory populations of
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Tribolium and  Drosophila. By ‘typical’ we mean the standard overlapping generation
populations of Tribolium, with food renewed every 2 weeks, used in the studies by R. F.
Costantino, R. Desharnais and coworkers that we discussed in Chapter 5, and the HL type of
discrete generation Drosophila cultures used by L. D. Mueller, A. Joshi and coworkers that
were described in Chapter 6. Consequently, the various types of feedback loop depicted are
for parameter values seen in those typical populations. Deviation from those parameter
values can lead to dynamic consequences not depicted in figure 3.
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Figure 8-3 Schematic depiction of the ontogenyl/life-history of typical laboratory populations of
Tribolium (as used in the studies by R. F. Costantino, R. Desharnais and coworkers) and
Drosophila (maintained on discrete generations on an HL food regime), showing the major
density-dependent mechanisms affecting the dynamics of adult numbers. Thick black arrows
represent ontogenetic transitions. Thin black solid and dashed lines indicate very strongly and
moderately strongly stabilizing density-dependent feedback loops, respectively. Thin gray dashed
lines indicate potentially destabilizing but weak feedback loops. Life-stages that act as triggers of
density-dependent regulatory mechanisms are underlined.
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For example, experimentally increasing the rate of adult mortality in Tribolium cultures can
have a strongly destabilizing effect. Similarly, in an LH type of Drosophila culture, the
weakening of the adult density dependent effects on female fecundity can completely
eliminate the stabilizing effect of the feedback loop due to density dependent fecundity.

Tribolium cultures have overlapping generations and, typically, life-stages or cohorts are
not spatially segregated. In many of the Drosophila studies, on the other hand, populations
have been maintained on fully discrete generations. Base-line fecundity in Drosophila is
relatively high, and is subject to adult density-dependent regulation. Compared to Drosophila,
both base-line fecundity, and the strength of its density-dependence, are substantially lower
in Tribolium. Motreover, the principal density-dependent regulatory mechanisms in Trzboliun:
are cannibalism of eggs and pupae by adults, and to a lesser degree, cannibalism of eggs by
larvae. Thus, the major trigger life-stage for regulation in T7ibolium is the adults, and the main
targets of adult density-dependent mortality are eggs and pupae. At the same time, the larval
stage is also a subsidiary trigger for cannibalism of eggs by larvae. In Drosgphila, too, there are
multiple life-stages triggering different major regulatory mechanisms. The major consumers
of food are the larvae, and they act as the trigger life-stage for density-dependent larval
mortality. However, regulation also acts through female fecundity, and here the primary
trigger life-stage is the adults, although larval density also affects female fecundity because
the size of an adult is reduced if it experienced relatively high densities as a larva (fig. 8.3).

If we focus primarily on the dynamics of adult numbers, it is clear that the strongest
stabilizing regulatory mechanism in Trbolium is adult density-dependent cannibalism of
pupae. Here, the delay between the triggering of the regulation and the impact of the pupal
mortality back upon adult numbers is minimal. Given the fairly high rate of pupal mortality

due to adult density-dependent cannibalism, this is a very strong regulatory mechanism.
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Larvae in T7ibolinm do cannibalize eggs, but the effect of this feedback on the dynamics of
adult numbers, though destabilizing, is weak because it is completely overshadowed by the
feedback via adult cannibalism of pupae. Similarly, there is also a potentially destabilizing
feedback loop through adult density-dependent recruitment into the youngest juvenile stage.
Although the adult density-dependence of fecundity in T7ibolium is very weak, compared to
Drosophila, the density-dependent cannibalism of eggs by adults plays the same role in the
life-history that density-dependent fecundity does. And, in fact, if we examine the strength of
adult density-dependence of recruitment into the larval stage in Tribolium, ignoring whether it
is through fecundity alone or a combination of fecundity and cannibalism, the recruitment
falls off with increasing adult density to a degree similar to that seen in Drosophila (tfigure 4).
In an overlapping generation culture of T7ibolium, such adult density-dependence of larval
recruitment is a potentially destabilizing feedback loop, but its overall impact on the
dynamics of adult numbers is low because of the very low baseline level of fecundity in
Tribolium. Motreover, as in the case of cannibalism of eggs by larvae, this effect too is

overshadowed by the very strong feedback loop of adult density-dependent cannibalism of

pupae.
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Figure 8.4 Comparison of the sensitivity of recruitment into the first juvenile stage to adult density
in laboratory populations of Drosophila and Tribolium. The figure shows best fit curves obtained
by fitting the hyperbolic model of fecundity as a function of density (F(N;) = a/(1 + bN,)) to data.
Data on fecundity of Drosophila females at different densities, after being maintained on either
yeasted or unyeasted food, were from Mueller et al (1999) and Mueller and Huynh (1994),
respectively, while data for Tribolium were from Rich (1956) for fecundity, and from Costantino
and Desharnais (1980) for larval recruitment.

In the case of a discrete generation culture of Drosophila, on the other hand, the situation
is different. Here, the only main feedback loop involving mortality is due to larval density-
dependent larval mortality, and this is a stabilizing regulatory mechanism. However,
considering the dynamics of adult numbers, this is not a very strongly stabilizing loop
because there is another loop that lies between the numbers of adults in one generation and
the operation of larval density-dependent larval mortality , affecting adult numbers in the

next generation. This intervening regulatory loop is through adult density-dependent female
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fecundity and, in a discrete generation population which already has an inbuilt time delay,
this feedback loop is stabilizing. Base-line fecundity in Drosophila, however, is rather high (fig.
8.4), and this feedback loop is therefore not as strongly stabilizing as the cannibalism of
pupae in T7ibolium. The effect of regulation through density-dependent fecundity in
Drosophila is also strengthened to a small degree by larval density-dependent control of
female fecundity. High larval density results in small adults, whose baseline fecundity is,
consequently, reduced. However, this effect is partly offset by the fact that high larval
density usually reduces subsequent adult numbers, due to high larval mortality, and this will
tend to reduce the inhibiting effect of high larval density on fecundity.

The laboratory populations of the blowfly, L. cuprina, discussed in chapter 4, provide an
interesting contrast to both T7ibolinm and Drosophila systems. Although the populations of L.
cuprina used in Nicholson’s (1954 a, b; 1957) experiments were also maintained with
overlapping generations, there are several differences between them and the Tribolium
populations we discussed in chapter 5 (Dennis ez al, 1995; Costantino ez al., 1995, 1997,
Benoit et al., 1998). Daily adult mortality, and therefore, the rate of turnover of cohorts
constituting the adult population, especially at high adult density, was far greater in L. cuprina
than in Trbolium. Baseline female fecundity in L. cuprina was almost twice as high as in
Tribolium, and the sensitivity to adult density of recruitment into the youngest juvenile stage
was relatively lower in L. cuprina, especially in the LH treatments where adult protein supply
was unlimited. Most importantly, both major density-dependent regulatory mechanisms in L.
cuprina, adult density-dependent female fecundity and larval density-dependent larval
mortality, involve a time delay more or less equal to the development time before the
triggering of the density-dependent feedback and its effect finally being felt at the adult stage.

Recall here, that in the LH food regime of Nicholson’s, adults lay large numbers of eggs
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regardless of adult density, giving rise to very high densities of newly hatched larvae.
Consequently, although the regulatory mechanism of larval mortality here is, strictly
speaking, triggered by larval density, the larval density itself is directly proportional to adult
density a few days before. Thus, in some sense, the trigger life-stage here is also the adult
stage. In Tribolium, the delay between the triggering of adult density-dependent cannibalism
of pupae and its impact on adult densities is almost negligible. It is, therefore, not surprising
that the dynamics of adult numbers in T7ibolium are relatively stable, whereas in L. cuprina the
dynamics are highly destabilized, regardless of food regime.

If we compare the effects of LH and HL food regimes on L. cuprina and Drosophila, it is
clear that the HL. food regime does not have the same stabilizing effect on L. cuprina as it
does on Drosophila. The reason for this, we believe, is the difference in maintenance regime in
the two systems. In the discrete generation Drosophila populations that were subjected to HL.
and LH food regimes, only eggs laid during a 24 hour period were used to initiate the next
generation. The L. cuprina populations, on the other hand, were maintained with overlapping
generations, and egg laying by adults was continuous, as was recruitment into the adult life-
stage. When generations are fully discrete, as in the Drosgphila populations, the HL. food
regime is stabilizing because the regulatory effect of adult density-dependent fecundity
eventually trickles up the ontogeny, through the egg, larval and pupal life-stages, back to the
adult stage that triggered it. The critical point is that the ontogenetic delay here is not
destabilizing because, in such a system, any adult density-dependent feedback effect will have
to undergo this process of trickling back up through the entire ontogeny, because
recruitment into the adult stage is episodic and because the adult stage cannot feed back
onto preceding life-stages against the flow of the ontogeny, so to speak. In a system with

overlapping generations, where recruitment to the adult stage is continuous, and where adult
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density can feedback upon pre-adult stages against the flow of the ontogeny, a time delay in
density-dependent regulatory mechanisms will be destabilizing. As we noted earlier, stability
is, at least in this context, a relative notion. Indeed, it is quite likely that in an overlapping
generation culture of Drosgphila, strong adult density-dependent fecundity would not in itself
be a strong stabilizing factor. Overall, we feel that the contrasts between the three model
systems discussed here support the view that considerations of whether generations are
discrete or overlapping, and what kinds of time delays exist between the triggering and effect
of density-dependent feedback mechanisms, can be of great importance in determining
whether a particular density-dependent mechanism will have a stabilizing or destabilizing
effect on population dynamics. Some of the comparisons also exemplify the point that the
same density-dependent regulatory mechanism can be either destabilizing or stabilizing,
depending on the various life-history and ecological attributes of the system.
MODEL SYSTEMS IN ECOLOGY: WHERE NEXT ?

Our intention in writing this book has been to review the work done on single-species
population dynamics using model laboratory systems, and to highlight, through this review,
the tremendous potential of such systems for testing and refining theory in population
ecology. Although the last two decades have seen tremendous growth in population ecology,
much of this has been due to increased theoretical studies, and studies on wild populations,
and advances in data analysis techniques. Laboratory studies in population ecology have not
registered the same kind of growth, and we hope that this book will help redress this
imbalance by inspiring more people to take up studies of model laboratory systems. In this
last section, we highlight some areas of population ecology in which we think that studies on

laboratory systems will prove especially fruitful in the future.
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Although it is clear that much work has been done, especially on laboratory populations
of Drosophila and Tribolium, we feel that there are still many unanswered questions in
population ecology, the answers to which are perhaps best sought through empirical work
on model systems in the laboratory. As we have discussed in chapter 2, the theory varies in
predictions about the impact of age structure on the dynamics of populations in stabilizing
and destabilizing environments. Age classes in mammals and birds are relatively easily
distinguished, but these systems are not otherwise amenable to controlled experimentation.
In chapter 6, we discussed one preliminary study of the effect of age structure on the
dynamics of Drosophila populations kept under a destabilizing maintenance regime. With
model systems, it should prove possible to critically examine many of the conflicting
predictions from the theory.

Knowledge of age-class dynamics are important for ecological and evolutionary reasons.
Members of different age-classes may make different demands for natural resources or may
show different propensities to disperse. If the absolute numbers of individuals in different
age-classes varies or if their relative proportions vary, this can impact important ecological
features of a population. Predictions of the effects of natural selection in populations with
age-structure depends on the relative distribution of individuals into different age-classes
(Chatlesworth, 1994). The effects of natural selection on age-structured populations is
important for understanding the evolutionary of iteroparity or the near universal
phenomenon of aging (Rose, 1991). It will be important in the future to understand the
environmental or other factors that might cause age-classes to achieve a stable age-
distribution or to fluctuate in a regular fashion. Such information could greatly expand the

sophistication and relevance of evolutionary models with age-structured populations.
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Another aspect of single population dynamics that we feel will benefit from studies on
model laboratory systems is our understanding of the biological causes of demographic
stochasticity. Stochasticity can be incorporated into models of population dynamics in many
ways. One may add a stochastic component to individual parameters of the model, or one
may add a stochastic component to the predicted population size in the subsequent
generation. Similarly, the stochastic component may be assumed to be additive on either the
numerical or logarithmic scales. The impact on dynamics of incorporating stochasticity into a
model in different ways has not been systematically studied. From a biological point of view,
too, demographic stochasticity can arise from many causes, such as random variation in
fecundity and in mortality at different life-stages, or random variation in sex-ratio. In chapter
6, we discussed a study with Drosophila, suggesting that random sex-ratio variation may not
be a major contributor to demographic stochasticity. It may be worthwhile to theoretically
examine whether different biological causes of stochasticity translate into differences in how
the stochastic component should be incorporated into a model of dynamics, and whether
such differences ultimately yield varying predicted population size distributions. Empirical
verification of such theory will definitely be much easier with laboratory rather than natural
systems.

The ability to manipulate migration rates and the nature of population dynamics in
model systems like Drosophila and Tribolium also makes them useful for empirical verification
of various predictions from single-species metapopulation theory. The effects of the
interplay between migration and local dynamics on overall metapopulation dynamics can be
fruitfully studied using model systems, as we have seen in chapter 6. In addition, there is
considerable theory about the effects of constant migration rates on dynamics, the evolution

of migration rates, and the effect on local and global dynamics of migration among sub-
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populations that show a variety of dynamic behaviors. These are all issues that will be
difficult to study using natural populations, but are amenable to laboratory studies. Dynamics
of Tribolinm and Drosgphila cultures can be easily manipulated, as can migration rates. In
Tribolinm, increased emigration has been successfully selected for (Goodnight, 1990 a,b),
indicating that it may be possible to study the density-dependent evolution of migration rates
experimentally.

Systems of interacting species provide examples of some of the most complex and
interesting spatial and temporal patterns in dynamic behavior. Although such systems are
beyond the purview of this book, we think that the use of laboratory systems would enhance
our understanding of such complex systems. Some of the earliest empirical work on two-
species dynamics was done on laboratory cultures of protozoans (Gause, 1934), and much
detailed empirical work on inter-specific competition used laboratory populations of
Drosophila species (Moore, 1952 a,b; Miller, 1964 a,b; Ayala, 1966, 1971; Arthur, 1980, 1986).
More recently, laboratory studies have demonstrated (a) the stabilization of competitive
interactions by predators (Worthen, 1989), (b) the presence of higher-order interactions and
indirect effects in multi-species assemblages of competitors (Worthen and Moore, 1991), (c)
a geographic mosaic in the outcomes of interspecific competition (Joshi and Thompson,
1995), (d) the coevolution of competitors (Goodnight, 1991; Joshi and Thompson, 1996).
Although, this is a partial list of important experimental work in multi-species population
ecology, it suffices to make the point that laboratory systems can continue to make an
important contribution to our understanding of the dynamics of multi-species systems.

Some of the most interesting questions in community ecology arise in the context of
multi-species metapopulations. Many of these questions, such as the effect of migration

corridors on species abundance and diversity in communities, are also important to
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conservation biology, and have been studied using multi-trophic laboratory communities of
bacteria and protozoa (Burkey, 1997), and replicate field micro-ecosystems of moss patches
with their microarthropod fauna (Gonzalez ef al., 1998). Interestingly, fragmented microbial
ecosystems with corridors went extinct significantly faster than those without corridors
(Burkey, 1997), whereas in the moss patches, corridors arrested the decline in abundance and
diversity of the microarthropod fauna caused by fragmentation (Gonzalez e# al., 1998). Such
differences in the results from different model systems highlight the need for studies on a
range of model systems, which has not been the case thus far. Model micro-ecosystems have
also been used to examine the effects of productivity and patch size on food web
complexity: larger patches of habitat were found to support a food webs with more species
and longer food chains than smaller patches of otherwise identical habitat (Spencer and
Warren, 1996). Once again, we are citing just a few studies of this type, to make the point
that model systems can be useful in testing predictions from theory in community ecology as
well as population ecology.

One advantage of model systems, as opposed to the majority of field systems, is often in
the detailed knowledge of their biology that is already available. Thus, not every population
of a species that happens to have been maintained in controlled conditions in a laboratory is
really a model system. For well developed model systems, a wealth of information on their
laboratory ecology, life-history and genetics is available, and it is this knowledge that allows
an experimenter to go beyond observing certain dynamic behaviors and analyzing the
observed patterns in time and space. Thus, as we have seen in the case of Drosophila and
Tribolium, we now actually understand a great deal about how particular ecological or life-
historical phenomena give rise to certain kinds of dynamic behavior. One of the drawbacks

with most natural systems is that, even if our knowledge of their ecology is reasonably good,
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we typically know next to nothing about the genetic architecture of fitness components in
those environments. Yet, as population ecology and population genetics move closer to one
another, many of the interesting questions in evolution and ecology lie on their interface. For
addressing these questions, model systems like Drosophila are extremely useful because a lot is
already known about their laboratory ecology and evolutionary genetics under a variety of
laboratory environments. Questions about the evolution of population dynamics and
stability, involving an evaluation of group selection versus individual selection based
hypotheses, are amenable to empirical study with model systems. So are issues like the
impact of inbreeding levels on population extinction rates, the genetic effective size of
metapopulations, and the determination of minimum viable metapopulations from both
demographic and genetic points of view.

As we said earlier, we are disturbed by the relative rarity of experimental studies on
model systems in ecology, as compared to studies on wild populations. Ultimately, our
understanding of population or community dynamics will be best served by a three-pronged
approach that involves feedback from theory, laboratory experiments and field studies. For
this approach to be balanced, not only do we need more studies on model systems, we also
need to develop a greater diversity of model systems, that are well characterized both
ecologically and genetically. At this time, Drosophila and Tribolium remain the two best model
systems for studies in population ecology. Genetically, Drosophila is better characterized, but
Tribolinm genetics is also making rapid advances (e.g. Alvarez-Fuster e al., 1991; Beeman ez al.,
1996; Beeman and Brown, 1999). There are other laboratory systems that have already been
used extensively in studies on evolutionary genetics and life-history evolution, such as
bacteria (Vasi ez al., 1994; Lenski and Travisano, 1994; Travisano ¢f al., 1995 a,b; Elena et al.,

1996; Elena and Lenski, 1997), and the bruchids Callosobruchus (Moller et al., 1989; Tatar et al.,
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1993; Tatar and Carey, 1994, 1995) and Acanthoscelides (Tucic et al., 1990, 1996, 1997).
Perhaps some of these systems could also be used fruitfully for investigations in population

dynamics in the future.
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