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CHAPTER ONE 

Introduction 

Interest in understanding the growth of biological populations goes back at least a couple 

of centuries, long before either the coining of the word ökologie by Haeckel in 1866 to 

denote the study of the relationship of the organism and its environment, or the 

crystallization of population ecology as a distinct discipline in the 1920s and 30s. Both 

Linnaeus and Malthus recognized that the very nature of reproduction implied geometrical 

increase in population size, and that such an increase obviously was not taking place 

unchecked for most, if not all, biological populations. Darwin, in his 1859 book, Origin of 

Species, drew upon this idea of the potentially limitless power of increase of populations to 

emphasize that there existed in the natural world a constant struggle for existence which, in 

turn, formed the framework within which natural selection could act upon heritable 

differences that happened to enable some individuals to face the vagaries of this struggle 

better than others.  

Two major issues arose directly from this Darwinian view of nature, and the domain of 

ecology has largely been related to seeking the resolution of these two issues. The first issue 

was to understand exactly how the biotic and abiotic environment of a species interact to 

produce the struggle for existence. The development of physiological ecology in the early 

part of this century was a direct attempt to empirically study the mechanics of how 

organisms were able to withstand the rigors of existence in an often hostile world. The 

second issue, the resolution of which forms the domain of population ecology, and with 

which we shall primarily concern ourselves in this book, was the question of how order in 

nature was maintained in the face of the seemingly complex and disorderly struggle for 

existence. Clearly, the notion of stability, in the general sense of the maintenance of some 
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sort of orderly spatial and temporal distribution of living organisms, is implicit in this 

question. Indeed, as early as 1866, Herbert Spencer, in his book, The Principles of Biology, 

argued that the long term persistence of populations or species implied that forces 

contributing to mortality were in equilibrium with forces contributing to the preservation of 

life and to reproduction. He also argued that similar adjustments must also exist at the 

individual level between the organisms ability to sustain its life and its ability to reproduce, 

thus foreshadowing by many decades the basic tenets of both population ecology and life-

history evolution.  

These ideas of Spencer’s greatly influenced the development of ecology in the last years 

of the 19th century, shaping the view that nature existed in a balance that was for the 

common good, and that the primary job of the ecologists was to understand the precise 

system of checks and balances, through agencies such as competition and predation, that 

maintained the harmony of nature. More importantly, several of the major questions that 

have been the subject of the principal debates in population ecology through the 20th 

century can be seen to arise quite naturally from Spencer’s views on the balance of nature. 

One of the first questions that arises in this context is how exactly does one define the 

balance of nature, and, having defined it, how does one empirically determine whether any 

given population is at this balance or not? Debate on this issue is still continuing, although 

we have come a long way over the years in clarifying what exactly we mean by notions of 

population regulation and equilibria (reviewed in Turchin, 1995a). The obvious next issue, 

once one is decided upon what is meant by stability, is to understand the proximal causes of 

stability in biological populations. Such studies into how exactly populations are regulated in 

order to maintain them at an equilibrium, and what the relative role of biotic and abiotic 

factors is in population regulation, has also been the subject of intense debate in population 
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ecology, especially during the 1930s through 50s. Here, too, our understanding has 

progressed over the decades, with an increasing emphasis now being placed on elucidating 

the impact of details of the life-history of specific organisms, as well the spatial structuring of 

populations, on the dynamics and stability of populations. And finally, there is the issue of 

the ultimate causes, if any, for the stability of populations, an issue that explicitly brings 

evolution into the picture. The focus here is to try and understand how the dynamic 

behaviour and stability characteristics of populations may themselves evolve, perhaps 

directly by group selection, or indirectly, as a by-product of evolutionary changes in life-

history characters that are the primary focus of natural selection acting at the level of the 

individual. 

We will concern ourselves in this book with all three of the major questions outlined 

above, dealing with conceptual issues as well as empirical approaches to addressing these 

questions that we feel may be especially helpful in enhancing our understanding of 

population stability and its proximal and ultimate causes. One of our primary concerns is to 

highlight the potentially important role of empirical studies on model systems of laboratory 

populations in addressing questions regarding both the proximal and ultimate causes of 

population stability. Indeed, this will be our major focus in the rest of the book. No doubt, 

only studies on natural populations can address the issue of whether or not populations in 

the real world tend to show stable dynamic behavior. In order to evaluate the various 

hypotheses regarding the proximal and ultimate determinants of population dynamics and 

stability, however, we need to work with systems of replicated populations wherein the 

degree of environmental complexity and variability can be rigorously controlled and 

simplified. This is typically possible only with laboratory systems whose basic biology and 

laboratory ecology is relatively well understood. Indeed, some of the earliest experimental 
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work in population ecology in the 1920s and 30s was done on laboratory populations of 

insects (Pearl, 1927, 1928; Chapman and Baird, 1934) and protozoans (Gause, 1934). 

Thereafter, experimental work on laboratory systems became a little less common, especially 

from the 1960s on, as the emphasis shifted to studies on natural populations, partly because 

of the ongoing debates over whether natural populations were density-regulated, and 

whether interspecific competition was the primary force shaping the structure of biological 

communities. This is essentially the situation at the current time as well, with the bulk of 

research in population ecology involving either theoretical modeling, or the study of natural 

populations. Both these aspects of population ecology have been the subject of numerous 

recent books (e.g. Rhodes et al., 1996) and reviews, and we shall, therefore, devote much less 

attention to discussing them. 

Since a discussion of what exactly is meant by stability, and how one can empirically assess 

the stability characteristics of a population, is a necessary prerequisite to dealing with the 

causes, both proximal and ultimate, of stability in biological populations, we will first take up 

the theory of population stability in Chapter 2 and discuss the derivation of stability 

properties for a range of population growth models, including both extremely simple 

heuristic models and more complex ones that take into account various meaningful aspects 

of the biology of specific systems. In Chapter 3 we will compare several commonly used 

techniques of assessing population stability, and discuss their respective strengths and 

weaknesses. The use of some of these techniques to assess the stability of natural 

populations will be briefly reviewed in Chapter 7, thus addressing the issue of whether 

populations in nature tend to exhibit stability. Chapters 4 through 6 will focus in some detail 

on three model systems that have been the subject of fairly extensive empirical investigations 

in population ecology: the blowfly Lucilia cuprina, flour beetles of the genus Tribolium, and the 

fruitfly Drosophila melanogaster. Our goal here is not only to review the results obtained from 

studies on these model systems, but also to make comparisons across systems in order to see 

if the diverse results can be explained in the context of some common theoretical 

framework. We also hope that a detailed examination of these systems will serve to highlight 
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some of the advantages of using model laboratory systems to address the question of 

proximal and ultimate causes of population stability. Indeed, laboratory populations 

constitute a powerful system in which environmental factors can be varied, one or a few at a 

time, and the consequences of such manipulations on population dynamics observed with a 

high degree of rigor. Moreover, laboratory populations of species such as Drosophila also 

hold great promise for investigations on the interface of population ecology and population 

genetics Thus, in the concluding chapter, we will attempt to put the findings from the three 

model systems into perspective, as well as outline what we feel are some of the more 

interesting unanswered questions in this field. We will also discuss ways in which these 

questions may be addressed in the future by viewing them in the light of a general heuristic 

framework for understanding the dynamics of stage-structured populations. In this 

framework, the population dynamic consequences of density-dependence of different life-

history stages and fitness components will be seen to depend critically on the relationship 

between the life-stage that is directly controlled by density-dependence and the life-stage that 

is the focus of density-dependent regulation of recruitment into either the adult or the 

juvenile stages. 

As a prelude to dealing with the theory of population stability and its applications in the 

next three chapters, we will now outline, in the remainder of this chapter, the historical 

development of ideas regarding stability in population ecology. We will also discuss the 

various ways in which stability is defined and studied in different contexts. 

HISTORICAL DEVELOPMENT OF THE CONCEPT OF POPULATION STABILITY 

As we have seen, the notion of population stability as a balance between mortality and 

reproduction goes back well over a century. Indeed, population regulation has been the 

focus of major debates and discussions in population ecology practically since its inception 

as a distinct discipline in the early part of this century. Much of the early arguments about 

population regulation focused on whether population numbers were controlled primarily by 

biotic (Howard and Fiske, 1911) or climatic (Uvarov, 1931) factors. In the former case there 

was no clear notion of intrinsic density-dependent population regulation by negative 
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feedback, as much of this discussion on biotic factors actually involved predators such as 

birds that did not impact the prey insect populations in a density-dependent manner. 

Nicholson (1933) first made the point that “for the production of balance, it is essential that 

a controlling factor should act more severely against an average individual when the density 

of animals is high, and less severely when the density is low”, thus clearly enunciating the 

idea of density-dependent regulation of populations. Moreover, Nicholson (1933, 1954b) 

also made a clear distinction between “responsive” factors (those affected by population 

density) and “non-responsive” factors, such as climate or other aspects of the physical 

environment that do not result in regulation of population density, although they may greatly 

influence the level at which the regulatory mechanisms become operative and, thus, may 

determine the equilibrium size of the regulated population. Among the responsive factors, 

too, he differentiated between reactive and non-reactive factors, pointing out that in order to 

play a role in regulation, a factor must not only be influenced by population density but must 

also exert a negative feedback upon population density. 

Not all ecologists, however, immediately accepted Nicholson’s arguments for the 

primacy of density-dependent factors in population regulation. Andrewartha and Birch 

(1954) and Den Boer (1968) separately argued that invoking density-dependent factors was 

not necessary to explain the regulation of populations, especially the prevention of 

outbreaks, and that density-independent factors alone could explain the apparent stability of 

natural populations. Milne (1958), Dempster (1983) and Strong (1986) separately developed 

the idea of imperfect density dependence, or density vagueness, which essentially said not 

much more than that populations may be only strongly density regulated at fairly high 

densities, whereas for a large range of intermediate densities population size may fluctuate in 

a random manner. By and large, however, the consensus of opinion now appears to be that 
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density-dependence is a necessary prerequisite for population regulation, and the focus of 

present study has, therefore, shifted to more detailed analyses of how the life-history and 

ecology of different organisms interact to produce specific patterns of density-dependence 

of different fitness components, and how these patterns of density-dependence affect the 

dynamic behavior of populations (Cappucino and Price, 1995). 

WHAT IS STABILITY? 

Our frame of reference in this book will be on the analysis of single populations. In a 

deterministic environment the dynamics of a biological population may be described by a 

difference or differential equation. When these equations admit an equilibrium point, it is 

considered to be stable if perturbations away from this equilibrium result in the system 

returning to the equilibrium point (Lewontin, 1969). In the next chapter we will describe in 

more detail the idea of local stability. As the name implies the conclusions are only valid in a 

small region around the equilibrium point. For some models it is possible to establish 

whether an equilibrium is globally stable, implying that the system will converge to the 

equilibrium point from any feasible starting point. Global stability means that from any 

feasible starting point the system will converge to the equilibrium point. Establishing global 

stability for experimental systems is typically much more difficult than examining local 

stability. Consequently, we focus almost entirely on local stability analyses. Any discussion of 

stability is premised on the assumption that the appropriate time scale and spatial limits of a 

population are known (Connell and Sousa, 1983). This is usually not a problem for 

laboratory populations in which the appropriate time and spatial scales are usually known. 

For natural populations, however, it is often difficult to unequivocally establish the 

appropriate time scale and spatial limits. 
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In any habitat, there is almost always some degree of random variation in the 

environment that affects the number of organisms present in a particular population. Thus, 

probably no natural or laboratory population exists in a completely deterministic 

environment. We expect that random or stochastic variation is a more prominent 

component of the dynamics of natural populations than laboratory populations, and that is 

one strong reason for bringing populations into the laboratory for experimentation. In fact 

one reason for bringing populations into the laboratory is to reduce the level of stochastic 

variation.  

The meaning of stability in a stochastic environment is not as clear cut as in deterministic 

environments. Turelli (1978) reviews several criteria that might serve as useful measures of 

stability in random environments. (1) Does the stochastic process describing population 

dynamics possess a stationary distribution? The answer to this question might be yes if 

certain conditions are satisfied. A stationary distribution is a probabilistic description of the 

possible sizes a population may assume. It is "stationary" because it applies regardless of the 

starting point: no matter what state the population starts out in, the system is expected to 

converge to this distribution. In this sense the concept of a stationary distribution is more 

like the concept of global stability. (2) A stochastic population may also be considered 

“stable” if the fluctuations about its equilibrium are not too severe. This would mean the 

variance or coefficient of variation would need to be less than some bound. This concept is 

more akin to the traditional concept of local stability mentioned previously and it would 

provide a numerical estimate of stability (in the form of the coefficient of variation). Royama 

(1977, 1991) calls populations with bounded variance and no trend in population size, 

“persistent populations”. (3) The expected time to extinction or mean persistence time could 

also be used as a measure of stability (Ludwig, 1975, 1976). This is also a very practical 
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property, since there is now great interest in managing endangered populations and assessing 

the various factors that may lead to extinction. 

Extinction times due to demographic variation were studied by MacArthur and Wilson 

(1967). Their analysis showed that extinction times increase rapidly with increasing carrying 

capacity. However, an important component of population viability is the frequency of 

catastrophes that reduce population size (Mangel and Tier, 1993). It is reasonable these types 

of rare events, while important, will be related to aspects of the environment rather than the 

biological properties of density regulation. In this book our focus will be the biological 

phenomenon that determine population stability rather than the random aspects of the 

environment. 

Most of the analyses of model populations in this book will focus on the stability of the 

deterministic processes that affect population stability. For some populations, especially in 

nature, the actual dynamics may be quite different than the predictions from the 

deterministic models. In chapter 3 we will discuss in more detail the relative merits of 

stochastic and deterministic evaluations of stability. 

Another type of model stability is sometimes called structural stability. If model 

assumptions or parameters are changed slightly and the model displays qualitatively new 

behavior then the model is structurally unstable. For instance the neutrally stable cycles 

predicted by the Lotka-Volterra predator-prey models disappear if the prey grow is assumed 

to be density-dependent or if the predator exhibits satiation. Thus, the exploration of a 

model’s robustness may also reveal it’s structural stability. We will occasionally do this by 

examining the predictions of several different models. While the examination of structural 

stability of models is not common in population biology there are some good examples of 

this in the literature (Gilpin, 1975, chapter 7). 
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STABILITY IN METAPOPULATIONS 

A major contributor to the high profile of population dynamics studies in ecology in 

recent years has been the renewed interest in understanding the dynamics of systems of 

small to moderate sized populations that are linked by migration (metapopulations), as it is 

becoming clear that a metapopulation view may be of tremendous importance for 

conservation (Harrison, 1994), biological control (Van der Meijden and van Wijk, 1997) and 

epidemiology (Earn et al., 1998), in addition to providing insights into how natural diversity 

is structured. Earlier in this century, Sewall Wright (1931, 1940) had pointed out that that 

evolution could proceed very rapidly in spatially structured populations, especially if the sub-

structuring was accompanied by relatively frequent extinction of local populations and the 

recolonization of the vacant patches by individuals from neighboring sub-populations. 

Population ecology, for the most part however, remained focused primarily on single 

populations, although some workers did emphasize the importance of considering spatial 

structure and local extinction (Andrewartha and Birch, 1954; Huffaker, 1958; Gadgil, 1971). 

In the early theoretical studies on metapopulation dynamics, the emphasis was on the system 

as a “population of populations” and, hence, the primary focus of these studies was on 

population turnover and the attainment of a steady state in which some constant proportion 

of suitable habitat patches was occupied by local populations at any given point in time; the 

actual proportion occupied depended on the balance between extinction and colonization 

rates (Levins, 1969, 1970), yielding P e m 1 , where P  is the equilibrium proportion of 

occupied patches and e and m are extinction and colonization rates, respectively. Implicit in 

the classical view of metapopulation dynamics was the assumption that local dynamics 

involve a timescale much smaller than that of the dynamics of extinction and colonization, 
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such that all patches are either empty or fully occupied, and migration does not affect local 

dynamics (Hanski and Gyllenberg, 1993). 

With an increasing realization that incorporating migration into simple population 

models can have fairly significant effects on local dynamics (McCallum, 1992; Hastings, 

1993; Hastings and Higgins, 1994; Sinha and Parthasarathy, 1994, 1996), a somewhat more 

elaborate view of metapopulation stability at both the global (i.e. metapopulation) and local 

(i.e. sub-population) levels is beginning to emerge, (Ruxton, 1994, 1996a; Rohani et al., 1996; 

Amarasekare, 1998; Doebeli and Ruxton, 1998). The principal differences between this 

approach and the classical view of metapopulation dynamics are (a) the recognition that the 

patches in a metapopulation may have different area, suitability, local dynamics and 

connectivity to other patches, and (b) the realization that migration rates may be sufficiently 

high so as to impinge upon the local dynamics of sub-populations (Hanski and Simberloff, 

1997). A considerable body of theory has now been built up around the interactions of 

migration rates and local dynamics, and the consequences of this interaction for the stability 

of the local dynamics, as well as for the stability, in terms of total number of individuals 

rather than proportion of occupied patches, for the metapopulation as a whole. In this 

section, we will briefly discuss some of the predictions arising from this theory and, in 

chapter 6, we will describe a recent study in which some of these predictions were tested 

using experimental laboratory metapopulations of Drosophila. Although little empirical work 

has been done on the interaction of migration rates and stability in metapopulations, we 

want to spend some time on this issue because it seems to us that our understanding of local 

and global stability in metapopulations could be greatly enhanced by work on model 

laboratory systems. Indeed a few laboratory studies on the impact of metapopulation 

structure on extinction of populations have highlighted the utility of laboratory systems for 
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these kinds of investigation (Forney and Gilpin, 1989; Burkey, 1997). Rigorous field studies 

testing predictions about the impact of migration on metapopulation dynamics are extremely 

difficult to conduct, largely as a consequence of the difficulties of empirically establishing the 

dynamics of local populations and estimating colonization and migration rates in the field 

(Ims and Yoccoz, 1997; Stacey et al., 1997). It typically requires immense effort even to 

demonstrate that a particular assemblage of field populations fulfills the criteria for being 

considered a metapopulation (e.g. Hanski et al., 1994; Harrison and Taylor, 1997; Lewis et 

al., 1997; Morrison, 1998). 

Many of the theoretical studies on metapopulation stability that explicitly incorporate 

local dynamics were meant to ask whether metapopulation structure (patchiness) could 

stabilize systems of interacting species (competitors, mutualists, host-parasitoid or predator-

prey systems) that would otherwise result in one or more of the interacting species going 

extinct (e.g. Levins and Culver, 1971; Hastings and Wolin, 1989; Caswell and Cohen, 1991; 

Sabelis et al., 1991; Nee and May, 1992; Hanski and Zhang, 1993; Comins and Hassell, 1996). 

Stability in these models was, thus, viewed in the sense of ensuring long-term coexistence of 

the interacting species, and some empirical studies have attempted to test whether migration 

among patches really helps in ensuring coexistence of interacting species. In some 

continuous time predator-prey models the introduction of spatial heterogeneity may lead to 

chaos that is otherwise not observed with spatial homogeneity (Pascual and Caswell, 1997). 

Unfortunately, the evidence from field studies, however carefully conducted, is often of a 

tentative and qualitative nature. There is evidence that the added spatial dimension of 

metapopulation structure can ensure coexistence, over periods of time far longer than a 

single patch would sustain, of several greenhouse and field systems of herbivorous spider 

mites and their predators (Huffaker, 1958; Laing and Huffaker, 1969; Nachman, 1981, 1991; 
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van de Klashorst et al, 1992; Walde, 1995), as well as of competing boreal mosses, Tetraplodon 

angustatus, T. mnioides, Splachnum ampullaceum and S. luteum (Marino, 1991a,b), and of the 

ragwort, Senecio jacobaea, their herbivore moth, Tyria jacobaeae, and its parasitoid, Cotesia 

popularis (Van der Meijden et al, 1991; van der Meijden and van der Veen-van Wijk, 1997). At 

the same time, herbivore-host plant interactions can often be destabilized by metapopulation 

structure, especially when inter-patch distances are large relative to the dispersal ability of 

predators or parasitoids of the herbivore (Kareiva, 1987; Roland and Taylor, 1995). 

Qualitative predictions about extinction versus persistence of interactions, at least within the 

time scale of empirical studies, are relatively easy to test, not only in the laboratory but also 

in the field, either in controlled experiments, or through access to long-term records where 

one of the species in the interaction is an economically important pest. 

The more specific theory dealing with the impact of migration on local and global 

dynamics in metapopulations, however, is not so easily tested empirically, especially under 

field conditions. The predictions here are more detailed, and take into account, and address, 

the nature of the local dynamics in the individual sub-populations. For example, some 

models suggest that increasing migration rates tend to increase the coherence among sub-

populations exhibiting relatively large fluctuations in numbers through synchronizing the 

fluctuations across sub-populations, thus bringing them into phase with each other 

(McCallum, 1992; Hastings, 1993; Holt and McPeek, 1996; Ranta et al, 1997a; but see also 

Ruxton, 1996a). This effect could be destabilizing at the metapopulation level as it would 

cause total metapopulation size to fluctuate with a relatively higher amplitude, raising the 

likelihood of a chance extinction of the entire assemblage of local populations. Clearly, in 

this context, global noise, associated with large-scale effects such as climatic variations, is a 

correlating influence that tends to synchronize local dynamics (Ranta et al, 1997b; Earn et al, 
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1998; Grenfell et al, 1998), and can therefore be globally destabilizing if the sub-populations 

are not relatively stable. Local noise, on the other hand, tends to desynchronize the 

fluctuations of individual sub-populations. If the local dynamics are chaotic, this can magnify 

the desynchronizing effect of local noise, leading to enhanced stability at the metapopulation 

level as a result of different sub-populations fluctuating out of phase (Sol‚ and Valls, 1992; 

Adler, 1993; Allen et al., 1993). Thus, broadly speaking, many models suggest that greater 

migration in metapopulations is likely to be destabilizing at the global level when local 

dynamics involve large fluctuations in numbers. However, migration alone, in the absence of 

global noise, may not be able to enforce synchrony if the local fluctuations are erratic and of 

large amplitude (Haydon and Steen, 1997). 

On the other hand, some models suggest that migration, especially if density-dependent, 

could play a stabilizing role at the metapopulation level by acting to stabilize the local 

dynamics of sub-populations. In general, migration even at constant rates can stabilize 

chaotic dynamics of simple population models, like the linear and exponential logistic 

models, by altering the behavior to either sustained periodic cycles or stable equilibria (Sinha 

and Parthasarathy, 1994; Parthasarathy and Sinha, 1995). Constant immigration/emigration 

terms can also significantly alter the dynamics of extinction in these simple population 

models (Sinha and Parthasarathy, 1996). Similarly, density-dependent migration can have a 

stabilizing local effect by suppressing the fluctuations of individual sub-populations, thus 

also reducing overall fluctuations in metapopulation size. In fact, in systems of populations 

where the local dynamics are chaotic, following the exponential logistic model, introduction 

of low levels of migration can actually stabilize local dynamics, with sub-populations 

exhibiting either stable cycles or stable equilibria rather than chaos (Ruxton, 1994). Yet other 

theoretical studies suggest that migration in a single-species metapopulation where local 
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dynamics follow any of a variety of simple discrete-time models may be expected to have 

negligible effect on stability at the local level (Hastings, 1991; Gyllenberg et al, 1993; Hassell 

et al, 1995; Rohani et al, 1996; Ruxton, 1996b). 

It is clear from the body of theoretical work on this issue that how exactly migration 

rates may affect local and global stability in metapopulations will depend on a multitude of 

factors including the form of local dynamics, the nature (local or global, density dependent 

or independent) and magnitude of migration among sub-populations, and the extent and 

magnitude of local and global noise. Many of the details of how these factors can interact 

obviously await further theoretical work. It is also evident, moreover, that there has been 

practically no empirical work on the effects of migration on stability of the dynamics of 

metapopulations, as opposed to stability in the sense of persistence versus extinction: the 

most recent comprehensive review of metapopulation biology (Hanski and Gilpin, 1997) 

does not mention even one empirical study examining this important issue. One of the 

reasons for this state of affairs, we feel, is the almost exclusive focus on field studies in 

metapopulation biology, with a few notable exceptions (e.g. Huffaker, 1958; Forney and 

Gilpin, 1989; Nachman, 1991; Burkey, 1997). In any empirical test of the predictions of the 

models of the effect of migration on metapopulation dynamics, it will be imperative that the 

experimenters be able to manipulate local dynamics and migration rates at will. This is 

extremely difficult, if not impossible, to do under field conditions. However, such fine 

control over the dynamics of real populations can be attained in a laboratory setting, as we 

shall discuss in chapters 5 and 6. Thus, in our opinion, laboratory systems may be of great 

significance in providing the means for empirical validation of some of the more detailed 

predictions about the interactions between migration, noise and underlying dynamics in 

metapopulations, which in turn, may catalyze the development of more appropriate models 



Stability in Model Populations  Introduction 

L.D. Mueller & A. Joshi  1-16 

of metapopulation dynamics. This field of work is in an embryonic stage at present. 

Nevertheless,  we hope that the foregoing account, and our discussion of an empirical study 

of laboratory metapopulation dynamics in chapter 6, will draw the attention of readers to the 

vast potential of laboratory systems in this regard. 

WHY ARE WE INTERESTED IN STABILITY? 

The stability of populations is intimately related to the factors that determine population 

growth and are, thus, of obvious interest to ecologists. However, there are several reasons 

for specifically wanting to understand the general stability properties of populations, some of 

which are related to major problems in conservation biology and evolutionary biology. 

Population Extinction 

It seems logical that one consequence of unstable population dynamics would be an 

increased chance of population extinction. This assumption has led some workers to suggest 

that populations with unstable dynamics will be rarely observed because such populations 

will go extinct at higher rates than more stable populations (Thomas et al., 1980; Berryman 

and Millstein, 1989). Allen et al. (1993) have also suggested that chaotic population dynamics 

in conjunction with population substructure may, on the contrary, enhance species 

persistence. However, Allen et al. (1993) have also suggested that chaotic population 

dynamics in conjunction with population substructure may in fact enhance species 

persistence. While the relationship between population stability and extinction is not simple, 

the two are clearly intimately related. 

Effective Population Size 

An important force in the evolution of populations is random genetic drift, and the 

magnitude of drift a population undergoes is inversely proportional to its size. If the 

effective population size is reduced, rare genetic variants tend to be lost from the population 
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and loci are more likely to become homozygous. Moreover, in relatively small populations, 

selection will be less effective at either increasing or decreasing the frequency of alleles with 

small effects on fitness. When the size of a population varies over generations, the effective 

population size is equal to the harmonic mean population size and is, thus, especially 

sensitive to small population sizes. Consequently, a few generations of fairly low numbers 

can cause a rather disproportionate decrease in effective population size. Thus, even if a 

population varies randomly and symmetrically about some mean population size, the 

effective population size will decline as the amplitude of the fluctuations about the mean size 

increases (fig. 1.1). 

Environmental Variation
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FIGURE 1.1. Decrease in effective population size with increasing variation in symmetric random 
fluctuations about the mean size. Data were generated by simulating 100 generations of 
population growth with the dynamics governed by a logistic equation  with r = 1.8 and K = 1000. 
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Every generation a random variable (~N (0,s2)) was added to the log of the population size, and it 
is the value of s that is shown on the x-axis. 

Such variation in population size can be induced by either random variation in 

environmental factors, or by the nature of density-dependent regulatory mechanisms. In 

both cases, variation in populations size will tend to reduce the effective population size, 

rendering the population more susceptible to the effects of random genetic drift. 

Fitness in Age-Structured Populations 

Fitness in age-structured populations depends on a weighted average of genotypic age-

specific survival and fertility values (Charlesworth, 1994). Typically these fitnesses are 

computed under the assumption that a population has a stable-age distribution. Therefore, if 

a density-regulated population is not at a stable equilibrium point, these fitness calculations 

will be wrong, and this problem exists even if selection itself is not density-dependent. There 

has been little research or attention given to the implications of unstable population 

dynamics on evolution in age-structured populations although there may be many 

populations where these conditions are met. 

WHY DO LABORATORY EXPERIMENTS? 

For most other branches of Biology this question would seem naïve at best. In order to 

control variables except those of interest, replicate experiments under well-defined 

conditions seem obvious and necessary. Yet in ecology there is a long tradition and interest 

in, collecting observations and doing experiments in uncontrolled, or semi-controlled natural 

environments (Carpenter, 1996). The most compelling argument for this tradition is that 

Ecology is ultimately interested in the factors that affect the abundance and distribution of 

plants and animals in their natural environment. Consequently, many believe that 

observations in the laboratory environments will not add to our understanding of nature 

(Peters, 1991). 
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This type of argument is not confined entirely to Ecology. For instance much research in 

aging has focussed on the aging of individual cells. However, the utility of this information 

to inferring the mechanisms that affect the aging of whole organisms is debatable. One 

reason why the behavior of aging cells may not inform us about whole organism senescence 

is that the process of aging is largely determined by natural selection and may be, therefore, 

expected to have heterogeneous causes among both organ systems and species (Rose, 1991). 

However, we feel that the argument against laboratory experiments in ecology is far less 

compelling than that outlined above for the irrelevance of studying cellular aging to 

understanding organismal senescence. There is a tendency in many discussions in ecology to 

speak of "nature" as if it were a single, well-defined, set of conditions. In reality, of course, 

the natural environment is heterogeneous over time and space (fig. 1.2). Thus, the "natural" 

environment of a species in one year or season may be quite different from the "natural" 

environment in the next year or season. In that sense among the infinite hierarchy of 

environments the laboratory may be no more or less special than any other. 
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FIGURE 1.2. Temporal and spatial scales of ecological studies. This figure emphasizes the time 
and spatial scale that ecological studies represent by showing the ever-narrowing range of a 
particular field site. Thus, a tree and its insect flora in Mt. Shasta, California is just one of several 
trees in the immediate forest, which may be one of a very large number of forests in the world. 
Likewise, the observable events in one year may or may not be characteristic of the past 100 
years, which may be quite different from earlier epochs on earth. 

Certainly our ability to develop and test theories in ecology is not at an advanced stage. 

We are not yet at the point where our theories can incorporate and deal with the myriad of 

variables that are constantly changing in nature (Drake et al., 1996). The impatient ecologist 

will often suggest that perhaps the many details will not matter, and only competition, or 

only predation will matter and thus they are willing to hold their theory up to data from 

natural populations. This approach typically requires choosing data sets carefully and 

developing an ad hoc rationale for dismissing apparent contradictions to theory. 
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In our opinion, the laboratory is one of the best places to rigorously test ecological 

theory. Many of these theories are bound to fail even in the simplified environment of a 

laboratory. The ability to improve and reconstruct theory, however, will require that we 

understand why our prior theories have failed. In the laboratory the ability to determine the 

causes of theory failure will almost always be more straightforward and easy to diagnose than 

in the field.  

LABORATORY STUDIES OF POPULATION BIOLOGY 

The use of laboratory studies in ecology and evolutionary biology has a long history. 

Laboratory experiments permit certain aspects of the environment to be controlled and thus 

remove confounding factors that exist in natural populations. However, there are a variety of 

issues that need to be considered when designing laboratory experiments that we review 

here. Although much of our focus is on ecological problems many of the issues we address 

have been considered previously by Rose et al. (1996) in their discussion of laboratory 

studies of evolution. 

Starting Populations 

Many problems in ecology and evolution are concerned with populations that are 

normally outbreeding and genetically variable. This means that the populations brought into 

the laboratory should also be genetically variable. Thus, the original samples should be as 

large as practically possible. Laboratory experiments are sometimes started with isofemale 

lines. Isofemale lines are initiated by placing single, inseminated females in their own culture. 

Usually the progeny from these females then mate with each other for one or more 

generations. Even if the isofemale lines are later pooled together the inbreeding and 

subsequent crossing will lead to high levels of linkage disequilibrium that are unlikely to 

characterize populations in nature.  
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Some studies have utilized laboratory mutants or captive wild type stocks, especially 

studies utilizing Drosophila and Tribolium. Visible morphological mutations often have 

pleiotropic effects on many fitness traits that may affect population dynamics (Prout; 1971a; 

Bundgaard and Christiansen, 1972). Laboratory mutant and captive wild stocks (like Oregon-

R in Drosophila or Canton-S in Drosophila), often have irregular or unknown maintenance 

histories that can include frequent episodes of population bottlenecks or chronic 

maintenance at low population size. Consequently, most laboratory stocks, whether mutant 

or wild-type lines, make poor starting material for experiments in ecology and evolution. The 

exception to this is laboratory stocks that have been consistently maintained at large 

population sizes under a well defined and carefully controlled maintenance regime. 

This problem can be illustrated with the following hypothetical example. Suppose a 

human population was inbred and used for experimental research. In this particular 

population the inbreeding gave rise to a group homozygous for the sickle-cell anemia allele. 

Suppose this group is now compared to a second inbred population homozygous for the 

normal hemoglobin allele (e.g. wild type). Certainly a lot can be learned about the how the 

hemoglobin protein works by extracting hemoglobin from each of these two groups. 

However, if you were unaware of the nature of the genetic differences between these two 

groups, you might be tempted to argue that the wild type group contained alleles that 

increased longevity and thus were the key to reversing aging (since those with sickle cell 

anemia certainly don’t live as long as normal individuals). You could also incorrectly 

conclude that the alleles in the wild type population were the key to understanding stress 

resistance since those individuals could outperform the sickle-cell population in a wide 

variety of activities that require aerobic endurance. But in general the comparison of these 

two inbred populations tells us nothing about the genetic or physiological factors that affect 
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longevity or stress resistance in normal populations. Rather, they reveal the effects of a rare 

genetic disorder that has been made common in one population through inbreeding. 

As a real example consider inbred genotypes of D. melanogaster derived by the technique 

of chromosome extraction (Mueller and Ayala, 1981d). These inbred genotypes show strong 

positive correlations in rates of populations growth – those genotypes that grow quickly at 

low density also grow quickly at high density and those that grow slowly at one density tend 

to grow slowly at all densities (Mueller and Ayala, 1981d). What can we infer about the 

evolution of population growth rates, or about high fitness genotypes, in natural populations 

from these observations? The answer turns out to be - very little. In fact, when genetically 

variable D. melanogaster populations are maintained for many generations in the laboratory at 

either high or low population density, the genotypes that rise in frequency and become 

predominant exhibit trade-offs in stark contrast to the result obtained from the inbred lines: 

the genotypes that do best at low density, grow more slowly at high density and vice versa 

(Mueller and Ayala, 1981a, Mueller et al., 1991). Thus, the properties of inbred genotypes 

bear no resemblance to the high fitness genotypes in the outbred populations that are 

ultimately favored by natural selection operating at different densities. 

Lab Adaptation 

Studies in which the behavior of populations will be tracked over many generations must 

also consider the possible effects of evolutionary change in the populations being studied. In 

many ecological studies, such evolution may be undesirable because it may change important 

properties of the population that the experimenter wishes to keep constant. However, wild 

populations brought into the laboratory will inevitably undergo evolutionary change as they 

adapt to food, temperature, crowding and other aspects of the laboratory environment that 

differ from the natural environment of that population in the field. For instance natural 
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populations of Drosophila brought into the laboratory show a continual increase in adult 

population size as they adapt to the laboratory (Buzatti-Traverso, 1955; Ayala, 1965b, 1968). 

Consequently, laboratory studies aimed at testing evolutionary or ecological theories may be 

thwarted if the experimental and control populations are still adapting to features of the 

laboratory environment. It is, therefore, most desirable to use large, outbred populations that 

have had time (12 generations or more) to adapt to the laboratory environment as starting 

material for laboratory studies in ecology and evolution. 

Replicate Populations 

Most experimental research in population dynamics and evolution utilizes whole 

populations as the units of observations. Consequently, the power of any analysis will be a 

function of the number of replicate populations. Experiments with just one experimental 

and one control population have no power. Often the maximum number of populations will 

be determined by practical factors like time and cost of maintenance. However, with five 

replicate controls and five experimental populations one can meet the minimum sample size 

requirements for several non-parametric tests (e.g. Wilcoxon’s signed-ranks test, Sokal and 

Rohlf, 1981, pg. 448).  

In ecological studies, replicates serve the traditional role of ensuring that observed 

differences between experimental and control populations are a consequence of the 

experimental conditions and not random, uncontrolled factors. In evolutionary studies, 

However, the importance of replicates takes on a whole new dimension. Genetic differences 

may always arise between two populations due to random genetic drift. However, most 

laboratory studies are interested in genetic differentiation due to natural selection. Thus, the 

observation of genetic differences between one-control population and one experimental 

population does not help us distinguish between the relative importance of selection and 
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drift as causative agents. However, it is unlikely that five or more replicate populations will 

experience the same sequence of random events. Thus, in evolutionary experiments, the key 

to distinguishing between drift, a stochastic force, and selection a deterministic force, is the 

observation of consistent differentiation among multiple independent populations. 

A related problem is the size of the replicate populations. If the primary interest of the 

study is to investigate the outcome of natural selection then the replicate populations ought 

to be as large as possible. There are two reasons for this recommendation. (1) In large 

populations selection will be able to act effectively on alleles with small effects on fitness. 

For instance, consider a locus with two alleles and hence three genotypes A1A1, A1A2, and 

A2A2. Let the fitness’ be additive and equal to 1+s, 1+½s, and 1 respectively. If the initial 

frequency of the favored A1 allele is p, then fixation is virtually assured if Nesp > 5, where Ne 

is the effective population size (Ewens, 1979, pg. 147). As an example, in a population with 

Ne = 1000, where a favored allele exists as only a single copy, s would have to be 10 to be 

assured of fixation. Thus, in most laboratory experiments we cannot be certain that very rare 

favorable mutants will be fixed. However, an allele that is at a frequency of 10% is virtually 

guaranteed of fixation if the favored homozygote has a 5% or greater advantage over the 

alternative homozygote. If the population size had been 100 rather than 1000 the favored 

homozygote would have required a 50% fitness advantage rather 5%. As Ne , s and p become 

smaller the chance of a favored allele becoming fixed decreases and conversely the chances 

that the disfavored allele will be fixed increases. When Ne s < 0.1, the chance of fixation is 

very close to that of a neutral allele.  

(2) Small populations increase the chance that deleterious alleles will be fixed and thus 

potentially obscure the effects on fitness of beneficial alleles at other loci. This is especially 

likely to be the case when life history traits are examined since there appears to be abundant 
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genetic variation with deleterious pleiotropic effects on survival and fertility (Lewontin, 

1974). For neutral alleles that are fixed by drift it takes on average 4Ne generations for 

fixation. Alleles that directly affect fitness will take longer to be fixed on average, although 

their ill effects will be apparent well before they are fixed in a population. 

These concerns extend to ecological studies as well. Drift and inbreeding may impact life 

history traits that ultimately affect population dynamics in a significant fashion. For instance 

population stability is often dependent on female fecundity. However, inbreeding may 

significantly reduce female fecundity and thus the dynamics of a population about 

equilibrium (see chapter 6 for a detailed discussion).  

Measuring Genetic Differences 

Many laboratory studies with an evolutionary component will ultimately need to 

determine if there are genetic differences between populations. Often the interest is not in 

the particular frequencies of alleles in each population but in the unknown alleles and loci 

that affect quantitative traits. These traits are often affected by the environment and 

sometimes by the maternal environment. As an example, in Drosophila the level of larval 

crowding affects the ultimate size of the adult, small adults emerge from crowded cultures. 

However, phenotypes, like longevity (Miller and Thomas, 1958), and fecundity (Chiang and 

Hodson, 1950) are affected by adult size. Smaller adults tend to live longer and smaller 

females lay fewer eggs. The maternal environment may also be important.  Egg-to-adult 

viability in Drosophila is reduced as parental age increases (Rose, 1984).  

These effects can be removed by rearing test organisms for two generations in a 

common environment. Thus, one would sample adults directly from the control and the 

experimental populations and let them produce offspring under common conditions. The 

progeny that emerge from this generation will all have experienced a common environment 
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but may differ due to differences in their parent's age or nutritional state. Thus, one more 

generation is needed to obtain juveniles or adults that can be assayed for phenotypes of 

interest. If there are significant differences between experimental and control populations in 

the second-generation individuals these can be attributed to underlying genetic differences 

between the two populations. 

EVALUATING MODELS IN POPULATION BIOLOGY 

The analysis of population stability will inevitably require some characterization of the 

study organism’s population dynamics. This characterization will often be in the form of a 

mathematical model. We use the word model to generally mean an abstraction and typically a 

simplification of a biological process. From this definition it is clear that a model need not be 

mathematical but could be a verbal description of the abstraction. Of course the virtue of 

mathematical models is that their implications may be studied by the formal and generally 

understood techniques of mathematical analysis.  

Some mathematical models may represent important biological theories. For instance 

when considering population dynamic models we may construct them by careful 

consideration of the life history of a particular organism and the various ways these life 

histories are affected by biological attributes like, density or age. A comparison of the 

predictions of these sorts of models to empirical observations is then, to some extent, a test 

of our biological understanding of life history. 

Models can also be constructed from simple statistical techniques. Thus, the dynamics of 

a population may be modeled by a high-order polynomial whose coefficients have no 

biological meaning but have been estimated from a set of observed population trajectories. 

In either case the utility of a model may ultimately be assessed by comparing its predictions 

with a set of observations. The manner in which this is done varies greatly. With reference to 
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population dynamics comparing goodness of fit to some existing data set may help assess 

different models. Alternatively, the ability of the population dynamics model to predict new 

observations may be used as a criterion for model selection. In some cases the model may 

predict unusual behavior in altered environments and these predictions can be tested 

experimentally.  

Royama (1971) has reviewed some of the major factors that may lead to differences 

between a models predictions and empirical observations. Royama makes the obvious but 

sometimes unappreciated point that such differences don’t always mean the model is wrong. 

A model can be viewed as consisting of two features. (i) There are the components of the 

model. For a population dynamic model these components might be pre-adult survival, adult 

survival from one age class to the next, adult fertility etc. (ii) The structure of the model 

must also be specified. Using the example of population dynamics we would need to specify 

how the different components of the model interact. If survival showed density-dependence, 

does it change in a linear fashion with density or in some non-linear fashion? Clearly, there 

may be differences between the predictions of a model and observations from experiments 

or field populations because the components or the structure of the model may be wrong or 

insufficient. However, differences between the model predictions and observations may also 

arise because the conditions under which the observations were collected violate specific and important 

assumptions of the model. Thus, a natural population may never shown a sustained and constant 

equilibrium population size because the level of essential resources varies over time and is 

not constant as assumed by a simple model of population dynamics. 

The remedy to take in each of these cases is quite different. If we can reasonably 

conclude the model is wrong then we need to adjust it in a way that is suggested by our 

experimental findings. However, if the original observations are suspect then we need to find 
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or design an experimental system that can adequately test the model. Unfortunately when 

observations have been made in natural populations it is often too easy to invoke the 

uncontrolled aspects of the environment as the culprit for a model’s failure. Well designed 

laboratory experiments should permit us reject models only when their predictions are 

discordant with observations. This is ultimately the power of strong inference (Platt, 1964). 

GENERAL VS. SPECIFIC MODELS 

An important component of all scientific research is the transition from theoretical 

predictions to experimental tests. The theory of population genetics and ecology often 

assumes discrete generations and populations without stage or age-structure.  Problems arise 

when these theories are tested with organisms that depart from these assumed life-histories.  

For instance organisms like Drosophila can be made to reproduce on a discrete schedule and 

adult age-classes can be eliminated but the pre-reproductive stages of Drosophila can never be 

removed. Attempts to estimate fitness coefficients from simple population genetic models 

with organisms like Drosophila can be thwarted by selection acting on the different 

components of the life cycle (Prout, 1965, 1971a, 1971b).  This coupled with the necessity to 

assay adults rather than eggs meant that the most general models of selection were 

inappropriate for providing a framework for observations in the simplest of Drosophila 

populations. 

Prout has also recognized that similar problems will occur in simple models of 

population dynamics (Prout, 1980, 1985, 1986).  For instance the simplified life cycle of 

Drosophila in the laboratory will always have three different census stages, larvae, pupae and 

adults. A model keeping track of population size might refer to any one of these life stages.  

If selection acts in a density-independent fashion it is possible for evolution to increase, 
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decrease or have no effect on equilibrium numbers of particular census stages. Any general 

claim that selection will always maximize population size is not true.  

Prout has also noted that in some organisms fertility depends on their pre-adult density.  

Crowding during these stages often has lasting effects on adult size that in turn affect 

fertility.  This biological phenomenon posses some difficult problems for estimating the 

underlying population dynamics from data on adult numbers only. While this problem is not 

insurmountable (we discuss some solutions to it in chapter 2), in fact we discuss solutions to 

it in chapter 2, it must be considered in the development of model experimental systems. 

The issues discussed above raise the general question of the most appropriate type of 

model to use when developing theory in life-history evolution in general.  Christiansen 

(1984) makes a distinction between phenomenological and explanatory models.  The 

phenomenological models are simple and attempt to summarize the totality of density-

dependence or other factors with a single simple function (e.g. the logistic).  For these 

reasons the models are thought to have greater generality (Levins, 1968).  Whereas 

explanatory models explicitly take into account specific components of the life cycle of some 

organism or group of organisms and try to model the response of these life history 

components to density, parasites, etc. These latter models will have less generality since the 

life historical details included in these models may vary from one taxonomic group to 

another. Christiansen argues this is the most appropriate way to develop theory for the study 

of life history evolution in variable environments.  Certainly, if theory is being used to make 

specific predictions about the evolution of a particular population one can not use a model 

which ignores crucial life history details. 

Despite the simplicity of the laboratory environment, the design of good experiments 

with model systems is a multifaceted affair and must be planned carefully. However, once 
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the careful planning is done. there are great benefits to be derived from experiments with 

model systems, and we use the rest of this book to develop some of the knowledge about 

population stability learned from experimental work on model systems in the laboratory. 
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CHAPTER TWO 

Theory of Population Stability 

Many of the problems associated with population dynamics have been originally 

suggested by the analysis of simple models.  These models may often be unrealistically 

simple but are useful starting points in the exploration of population dynamics and, 

moreover, have substantial heuristic value.  In this chapter we review the classical 

mathematical techniques for determining the stability characteristics of these simple models.  

By devoting some attention to specific methods, the mathematical meaning of stability 

should become apparent.  In addition, these methods will aid in our discussion of the 

various techniques that have been suggested to empirically determine population stability 

since many of these techniques mimic the mathematical analysis of stability.  In this chapter 

we will focus on the stability concepts for deterministic models. In the next chapter the 

concepts of stochastic stability will be reviewed. 

The application and use of simple models requires careful evaluation of important life-

historical features of specific organisms.  We review the consequences of age-structure and 

interactions between different life stages on the ability to infer population stability. These 

issues will be important since it is often not possible to collect all relevant information from 

laboratory or natural populations. For example, often one has information on total numbers 

but not the number of individuals in each age-class or sex.  We need to know if we can make 

accurate inferences concerning population stability with incomplete data and, if not, how 

serious the impact of the lack of various specific details is on our ability to draw inferences 

about population stability. 

Populations typically harbor genetic variation for life history traits which can directly 

affect population stability (Mueller and Ayala, 1981c).  Consequently, population stability 
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may evolve in concert with these life history traits, possibly as a by-product of the evolution 

of these traits.  Understanding, the conditions that foster the evolution of population 

stability may help us interpret observed patterns in natural populations (Turchin and Taylor, 

1992). 

FIRST ORDER NON-LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS 

A simple model is often one that has few parameters.  For models of population growth, 

this usually means that the size of the population is assumed to depend only on one 

immediate past population size.  If an organism reproduces continuously, and all members 

of the population are considered to be equivalent, then the most appropriate description of 

population dynamics is through the use of differential equations in continuous time.  If we 

let N be the total number of individuals in the population, then the rate of change of this 

number, dN
dt , will depend on the current population size according to some function f(N).  

When f(N) is a nonlinear function the resulting model is a non-linear differential equation.  

Non-linear differential equation models clearly presume that the effects of density on 

reproduction and survival are instantaneous, which may, in fact, seldom be the case for many 

populations.   

An alternative modeling approach is to assume that reproduction in the population is 

synchronized, but is preceded by a period of development or, at least, an absence of 

reproduction.  Following reproduction, the adults may all die, leaving only the progeny to 

form the next generation. Alternatively, we may assume that some fraction of the adults 

survive to the next generation.  However, in these discrete time models, as with the 

continuous time models, all members of the population are considered equivalent. Thus, 

adults who survive must have the same capacity for reproduction, as the newborn progeny 

(i.e. there is no adult age-structure).  Since time can be meaningfully viewed as changing in 
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discrete steps, the general form of these models will be of a difference equation wherein 

population size at time t depends on that at time t-1 (Nt = g(Nt-1)). The function g(Nt-1) can be 

decomposed into two parts, Nt-1  (the per-capita growth rate, (Nt-1)).  The per-capita 

growth rate is typically assumed to decline with increasing population size due to biological 

factors such as density-dependent survival and fertility (Begon et al., 1990, pgs. 206-209). 

The precise form of the decline differs among models and, in the simplest case, can be 

assumed to be linear (although the function g(Nt-1) will still be non-linear).  We can illustrate 

this type of model with three different formulations of density-dependence of per-capita 

growth rates (Prout, 1980), 

(2.1)    N a a Nt t 1 2  (linear), 

(2.2)    N
a

a Nt
t




1

21
 (hyperbolic), 



Stability in Model Populations  Theory of Population Stability 

L.D. Mueller & A. Joshi  2-4 

(2.3)    N a a Nt t 1 2exp[ ]  (exponential). 

 The model using the formulation of growth rate as a linear function of density gives rise to a 

model of population growth called the linear logistic or the quadratic map.  Typically, the 

linear logistic equation is presented with two parameters, r (which equals a1 - 1) the intrinsic 

rate of growth, and K (which equals (1 - a1)/a2) the carrying capacity.  This model may also 

be derived by considering the reproduction and dispersal of single individuals (Lomnicki, 

1988). The exponential formulation yields a model of population growth variously called the 

exponential logistic or Ricker map.  Parameters of the three models have been estimated 

from observed population sizes in a single population of Drosophila melanogaster (fig. 2.1).  The 

predictions from all three models give reasonable descriptions of the observed population 
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FIGURE 2.1. The circles show the number of adults in the HL1 laboratory population of 
Drosophila melanogaster studied by Mueller and Huynh (1994). The lines are the predicted 
population sizes from models (2.1-2.3) based on maximum likelihood estimates (Dennis et al., 
1995, see Box A). The solid line is the predicted population size from the logistic equation, the 
dotted line is the predicted populations size from the hyperbolic equation and the dot and dashed 
line is the predicted population size from the exponential model. 
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sizes.  One point we wish to stress in this book is that the simple observation of 

concordance between observed and predicted population sizes by itself provides only weak 

support for a model.  To gather strong support for a theory would require one or more of 

the following types of observations, (i) obtain estimates of the model parameters 

independently of the population dynamics and then produce accurate predictions, (ii) the 

correct prediction of qualitatively different dynamics that would be expected under certain 

conditions which the model correctly predicts (for instance among models 2.1-2.3 the 

logistic and exponential models can produce cycles and chaos whereas the hyperbolic model 

can not), or (iii) use the model to make predictions about other aspects of the population 

(e.g. numbers of other life stages or average adult size etc. ) which can then be used to 

independently verify the model. 

A Maximum Likelihood: Suppose we have a sample of n, random variables, x1, x2, …, xn. These 

may be either discrete or continuously varying random variables. The probability density function 

is assumed to depend on the value of the random variable and a parameter , and is represented 

by, f(xi|). We then define the likelihood function for a particular sample and values of  to be, 

  L f xi
i

n

( ) ( | ) 



1

. 

If xi is a discrete random variable then the likelihood function will be equal to the probability of 

drawing the observed sample. The maximum likelihood estimate of  is designated   and is 

chosen to maximize the likelihood function. In the simplest cases we can use elementary calculus 

to find the value of  that satisfies, 

 
 

L( )

. 0  

Often times it is easier to find the maximum if we first take the log of the likelihood function. 

Some density functions may have k-random variables rather than one that are subject to 
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constraints, like i
i

k



 1

1

. These problems require a more sophisticated method of finding the 

maximum called, Lagrange multipliers (Intriligator, 1971, pg. 28). If the derivative of the likelihood 

function can’t be solved analytically then numerical methods must be used to find the maximum 

(Beveridge and Schechter, 1970).  

Dennis and Taper (1994) discuss applications of maximum likelihood techniques to 

population data. Suppose we have a time series of m+1 population sizes, N0, N1, …, Nm. We 

believe the dynamics of this population to be governed by a simple first-order difference equation, 

Nt = Nt-1g(Nt-1). If we let xt = ln(Nt) then random noise can be introduced into this equation as, 

   x x g N zt t t t    1 1 1ln , 

where zt is assumed to be normally distributed with mean 0, and variance 2. Next compute the 

density function of xt conditional on the previous log-population size, xt-1 as, 

   
f x x

x x g N
t t

t t t
( | ) exp

ln ( )


 


 










1 2

1 1

2

2

1

2 2 
. 

Then the likelihood function is defined as, 

    L f x x x x g Nt t m i i i
i

m

i

m

( ) ( | ) exp ln/     








  

 1 2 2 2 1 1

2

11

1

2

1

2 
. 

The derivative of this function must be taken with respect to 2, and the parameters of the 

function g(Nt). The resulting equations are set to zero and their solutions found. 

 

Continuous time versions of models 2.1-2.3 can be produced by deriving expressions for 

Nt+1 - Nt.  A differential equation can be obtained by letting this time difference go to zero.  

In that case the three new models can be written using the notation above as, 

(2.4)  
dN

dt
N a a N  ( )1 21  (linear, often referred to as the continuous time logistic 

model), 
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(2.5)  
dN

dt
N

a a N

a N


 








1 2

2

1

1
 (hyperbolic), 

(2.6)   dN

dt
N a a N 1 2 1exp( )  (exponential). 

The right hand side of each equation (2.4-2.6) has N multiplied by a term in parenthesis.  

This term is no longer a per-capita growth rate but is the instantaneous increase in 

population size due to the difference between births and deaths.  To find equilibrium points 

of the discrete time models, we determine the population size at which the per-capita growth 

rates are equal to one, e.g. the density at which each individual in the population can just 

replace itself.  To find the equilibrium of the continuous time model one must determine the 

population size at which the instantaneous increase is exactly zero, meaning births just 

balance deaths.  An important property of models, both discrete and continuous time, of this 

type is whether the equilibria just described are stable.  We next review the standard 

mathematical techniques for answering this question. 

STABILITY OF FIRST ORDER NON-LINEAR DIFFERENCE AND 

DIFFERENTIAL EQUATIONS 

In this section we will focus mainly on the analysis of local stability, implying that the 

statements concerning the behavior of the dynamical system will only hold in a small region 

close to an equilibrium point.  In contrast, a globally stable equilibrium is approached from 

all feasible population sizes.  Conceptually, analyzing local stability involves determining the 

dynamics of the system in a region close to the equilibrium point of interest.  The word 

“close” for our discussion means that the range of population sizes examined will be 

sufficiently narrow that we can approximate the non-linear functions describing the 

dynamics with linear functions.  The mathematical technique that is used to produce this 
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linear approximation is called a Taylor series expansion.  An outline of Taylor’s Theorem is 

given below in box B.  The discussion of the stability of growth models which follows can 

be found in many elementary texts, and a particularly nice example for population growth 

models is given in Roughgarden (1979). 

B Taylor Series: Taylor’s theorem provides a convenient means of estimating certain types of 

complicated functions. If the function can be differentiated then in principle the function can be 

approximated to any desired degree of accuracy. If we consider only functions of a single 

variable, x, then we also need to choose a single value of x, x*, which will be close to the values 

of x we wish to use in our function.  The estimates provided by Taylor’s theorem will be most 

accurate when x is close to x*.  The level of accuracy depends on both the form of the function 

and how many terms in the Taylor series are used.  If we let the function be f(x) and f(n)(x*) be the 

nth derivative of f(x) evaluated at the point x*, then Taylor’s Theorem says, 

(2.7) 

f x f x
x x

f x
x x

f x
x x

n
f x

x x

n
f

n
n

n
n

x

( ) ( *)
( *)

!
( *)

( *)

!
( *)

( *)

!
( *)

( *)

( )!
( )

( ) ( ) ( )

( )

 





    









1 2

1

1
2

2

1
1 

 

where x is some point on the interval where f(x) is defined.  The last term in equation (2.7) is 

called the remainder and its exact value is typically unknown.  The Taylor series approximation 

(or expansion) of the function f(x) is all terms on the right hand side of equation (2.7) except the 

remainder.  As an example let’s consider the exponential function, ex.  The value of the nth 

derivative is always ex , for all values of n.  If we center the Taylor series approximation around 

the point, x* = 0, then the approximation looks like, 

(2.8)  e x
x x x

n
x

n

     1
2 3

2 3

! !
...

!
. 

If we use just the first two terms in equation (2.8), then our approximation of e0.1 is 1.1 while the 

exact value is 1.105.  However, as we try to get estimates with values of x further from zero the 
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accuracy of the prediction gets worse.  Thus, the approximation to e1.1, using just two terms of the 

Taylor series, is 2.1 while the exact value is 3.00.  

 

In our discussion of local stability analysis, we first consider continuous time growth 

models.  An equilibrium for these models must satisfy the condition that 

dN
dt f N (  ) 0 .  The problem we must solve is to describe the behavior of a small 

perturbation, , to this equilibrium, N N   .  Does the perturbation die off to zero and 

return the system to the equilibrium population size N , or does the perturbation increase in 

magnitude and move the population away from the equilibrium?  To study this we will 

approximate the effect of the perturbation on population size, f N(  )  , with a Taylor 

series expansion about the point, N , and use just the first two terms in the series.  This leads 

us to, 

(2.9)  
dN

dt

d N

dt

d

dt
f N f N f N


   

(  )
(  ) (  ) (  )( ) ( ) 

 1 1 . 

Equation (2.9) can then be integrated to find the time dependent behavior of .  This 

produces the result that, 

(2.10)   ( ) ( )
( ) (  )t e f N t 0
1

. 

Consequently, if the first derivative, f(1)( N ), is less than zero then (t) 0 as t  (read the 

symbol “” as “goes to”).  That is, the population returns to the equilibrium, N .  If f(1)( N ) 

is greater than zero, then (t)  as t .  In other words, the population size departs 

from the equilibrium at an exponential rate of increase, at least initially.  As an example, for 

the linear or logistic model (eq. 2.4), f(1)( N ) = 1 - a1 or r. Thus, local stability of the 

equilibrium, N , is insured if a1 > 1, or r > 0. Since r is the maximal per-capita instantaneous 
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rate of increase, under ideal conditions, it will be positive unless the population is declining 

in numbers with time and is inviable in the long run. Thus, the continuous time logistic 

model predicts a stable equilibrium for any increasing population. 

In discrete time models, an equilibrium must satisfy the condition, g(Nt) = N .  As 

before, we need to examine a perturbation to the equilibrium, t.  We study the time 

dependent behavior of this perturbation by noting, 

 (  ) (  ) (  )  (  )( ) ( )N g N g N g N N g Nt t t t         1
1 1 . 

If we subtract N  from both sides then we get the solution, 

(2.11)     t t

t
g N g N


 1

1 1 1

0
( ) ( )(  ) (  ) . 

Thus, equation (2.11) predicts that stability will be insured if, g N( ) (  )1 1 .  If g N( ) (  )1 1 , 

then further analysis is required and if, g N( ) (  )1 1  the equilibrium is unstable.  Sometimes 

the quantity, g N( ) (  )1 , is referred to as the leading or stability determining eigenvalue.   

Using this approach, we have determined the equilibrium population size and stability 

determining eigenvalue for that equilibrium for each of the discrete time models 2.1-2.3 

(Table 2.1). 
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TABLE 2.1. The equilibrium population size, N , and the stability determining eigenvalue, , for 
the discrete time models 1-3. 

 

It is worth noting that, for biologically reasonable values of the parameters a1 and a2, the 

linear logistic and the exponential model can produce eigenvalues of absolute value greater 

than one, whereas the hyperbolic model can not.  Careful examination of equation (2.2) 

shows that the parameter a1 will equal the per-capita growth rate of the population when N 

is very small.  For that reason it must at least be positive.  In fact a1 must also be greater than 

one or else the equilibrium at N = 0 is stable, i. e. the population goes extinct.  With a1 > 1, 

the stability determining eigenvalue for the hyperbolic model is always less than one.  Hence 

the hyperbolic model predicts that all feasible equilibria with N  > 0 will be stable. 

We illustrate models (2.1-2.3) with another set of data from a population of D. 

melanogaster (fig. 2.2) with very different growth characteristics than the population illustrated 

in figure 2.1.  We discuss the causes of these differences in more detail in chapter 6.  What is 

clear from the figures themselves is that the population in figure 2.2 is fluctuating more 

violently than the population in figure 2.1, and over the nine generations of observations 

shown has not settled down to what might be considered an equilibrium population size. 

Model N   

Linear logistic 1 1

2

 a

a
 

2 - a1 

Hyperbolic a

a
1

2

1
 

1

1a
 

Exponential 


1

2
1a

aln( )  
1 - ln(a1) 
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For the populations illustrated in figures 2.1 (HL1) and 2.2 (LH1) we present maximum 

likelihood estimates for the parameters of models 2.1-2.3 (Table 2.2).  Of interest is the value 

of the stability determining eigenvalue, , predicted by each of these models.  For all models 

|| < 1 for population HL1 (fig. 2.1) suggesting that a stable equilibrium exists.  However, 

for the population LH1 (fig. 2.2) the linear and exponential models predict that the 

equilibrium population size, N , is unstable. 
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FIGURE 2.2. The circles show the number of adults in the LH1 population of Drosophila 
melanogaster studied by Mueller and Huynh (1994). The lines are the predicted population sizes 
from models (2.1-2.3) based on maximum likelihood estimates (Dennis et al., 1995). The solid 
line is the predicted population size from the logistic equation, the dotted line is the predicted 
populations size from the hyperbolic equation and the dot and dashed line is the predicted 
population size from the exponential model. 
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TABLE 2.2.  The parameter estimates for three models and two populations of Drosophila 
melanogaster, HL1 and LH1 shown in figures 2.1 and 2.2 respectively. 

  Model Parameter Estimates 

Model Population a1 a2 N   Stability of N  

Linear HL1 1.701 -0.000885 792 0.299 Stable 

 LH1 3.06 -0.0031165 661 -1.06 Unstable 

Hyperbolic HL1 1.83 0.00103 805 0.546 Stable 

 LH1 2.05  108 6.55  105 313 4.88  10-9 Stable 

Exponential HL1 1.76 -0.000710 796 0.435 Stable 

 LH1 7.69 -0.0047 434 -1.04 Unstable 

 

This brief analysis of data has illustrated an important point concerning the use of 

models.  Based on the results shown in figure 2.1, one is tempted to conclude that the three 

models (2.1-2.3) all do an adequate job describing the dynamics of these Drosophila 

populations.  However, as discussed in chapter 1, simple agreement between observations 

and predictions, especially when the predictions have relied on the observed data to some 

extent, is not strong support for a particular model.  Consequently, there must be a vigorous 

search for methods independent of simple model fitting for validating population dynamic 

models.  We see through the analysis of the LH1 population data that the hyperbolic model 

is not capable of providing an adequate description of its dynamics.  It seems sound to 

conclude, therefore, that the hyperbolic model will not be a generally useful model for 

describing Drosophila population dynamics. 
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POPULATION CYCLES AND CHAOS 

Cycles 

A question that arises from the preceding discussion of stability is what happens in the 

case of populations controlled by models (2.1) and (2.3) when their equilibrium points are 

unstable?  The moment the equilibrium points listed in table 2.2 become unstable, two new 

stable equilibria appear and the population begins to cycle between them.  This phenomenon 

is known as period doubling or bifurcation (May and Oster, 1976).  Since, the equilibrium 

point is now unstable it acts as a repellor, meaning points close to it move away. Since the 

instability is due to the eigenvalue becoming less than –1, points near the former equilibrium 

will oscillate above and below the previous equilibrium as they move away from it. As a 

result of this behavior this process is sometimes called flip bifurcation (Hilborn, 1994). 

As the value of the parameter a1 in models (2.1) and (2.3) continues to increase, a 

threshold value is reached at which the two point cycle itself becomes unstable, and each of 

these equilibria further bifurcates to produce a stable four point cycle.  These period 

doublings continue until there are an infinite number of period doublings, and the 

population exhibits a form of dynamics called chaos.  For the linear model, the transition to 

chaotic dynamics occurs when a1 = 3.57.  We might qualitatively describe chaos as unstable, 

aperiodic behavior (Kellert, 1993).  Period doubling is just one of several pathways to chaos. 

We will review these in more detail in the next section. To gain some additional insights 

about the properties of these new equilibria let us first consider the stability of the pair of 

equilibria which appear when a1 just exceeds 3.0 in the  linear model. 

If we iterate the models (2.1) and (2.3) for the parameter estimates obtained for the LH1 

population (Table 2.2) it is apparent that each model appears to settle into a two point cycle 
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(fig. 2.3).  If we label these new equilibrium points, N 1 and N 2 then, from (2.1), the linear 

model must satisfy, 

(2.12a)     N N a a N1 2 1 2 2  , and 

(2.12b)     N N a a N2 1 1 2 1  . 

Substituting (2.12b) into (2.12a) yields a cubic equation in N 1 , which has three solutions.  

One of these solutions is the previous equilibrium, 
1 1

2

 a

a
 , which is now unstable.  The 

other two equilibria are the points seen in figure 2.3, which in general must be determined 

numerically.  For the LH1 population the equilibria are N 1 = 572 and N 2 = 730 for the 

linear model, and N 1 = 330 and N 2 = 538 for the exponential model. 

We next turn to the question of the stability of this two point cycle.  Formally the 

mathematical analysis of stability for the two point cycle is done as we have outlined for a 

single point equilibrium.  The core idea is if the system is perturbed slightly from this two-

point cycle does it return to the cycle or move away (see May and Oster, 1976 for a more 

detailed description).  In the case of a two point cycle, the stability determining eigenvalue, 

2, is given by, 
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(2.13)  2
1

1
1

2 g N g N( ) ( )(  ) (  ) , 

and in general if there is p-point cycle, N 1, N 2, …, N p, the stability determining eigenvalue, 

p is given by, 

(2.14)  p pg N g N g N ( ) ( ) ( )(  ) (  ) (  )1
1

1
2

1 . 

Applying equation (2.13) to the LH1 population we conclude 2 = 0.75 for the linear logistic 

model and 2 = 0.84 for the exponential model.  Thus, both models predict stable two-point 

cycles. 

In contrast to the discrete-time models discussed here, the simple continuous time 

models we have considered do not produce cycles or chaos. This is essentially due to the fact 

that in these models it is assumed that the population can adjust instantly to the current 

density conditions i. e. there is no time-lag in the negative feedback mechanism, an 

assumption that might not hold for many biological populations. Continuous time models 
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FIGURE 2.3. Population size variation for the linear (2.1) and exponential (2.3) models. The 
parameter values used were those estimated for the LH1 population in Table 2.2. 
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can, however, be modified such that the current rates of reproduction are determined by the 

density conditions that existed T time units in the past. With this type of time delay, we find 

more complex behavior like cycles in continuous time models (Cushing, 1977; Nisbet and 

Gurney, 1982; Renshaw, 1991, pp. 88-93; Hastings, 1997, pg. 92). The discrete time models, 

in fact, have these types of time delays built into them since reproduction is determined by 

the density of progeny produced one time unit ago. 

Chaos 

The next important question we tackle is how does one characterize chaotic population 

dynamics?  The very word “chaos” would appear to suggest a lack of any structure, and this 

is true to some extent.  For instance, the population size variation produced by a chaotic 

population superficially appears similar to random noise.  Yet, there is often a precise set of 

deterministic equations that drive the dynamics of chaotic populations and the behavior of 

these equations is not random.  One of the hallmarks of chaotic dynamics is extreme 

sensitivity to initial conditions, implying that the trajectories of two populations that initially 

start very close to each other will, over time, diverge and become increasingly different. 

From this definition it is clear that two trajectories that start from different points can not 

intersect each other if their dynamics are chaotic otherwise from the time of intersection the 

paths would be identical. With discreet time models two different trajectories may cross but 

never intersect each other. With the simple continuous time models considered here it is 

impossible for two continuous trajectories to cross paths without intersecting at one time 

point. For this reason it is more difficult for continuous differential equations to show 

chaotic behavior. In fact continuous nonlinear equations do not exhibit chaos until there are 

at least three or more independent variables (species, genotypes etc.). Discrete time models 
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are not so constrained and may exhibit chaos in one dimension (if the nonlinear function is 

not invertible, two dimensions otherwise). 

The study of nonlinear systems that give rise to chaos has also identified some unifying 

processes at work. Assume there is a single variable that determines the stability of a non-

linear equation, such as the logistic. Let r1 be the value of that parameter where the stable 

point equilibrium bifurcates to a period-2 equilibrium. Likewise, r2 is the parameter value at 

which the two-point cycle gives way to a four-point cycle and so on. We then define delta n 

as the ratio, 

n
n n

n n

r r

r r









1

1

. 

The Feigenbaum delta is then defined as, n nlim . ...    4 66920161 This result is 

independent of the particular nonlinear function that gives rise to these cycles. In physical 

systems where the n can be reasonably estimated, there is general agreement with the 

Feigenbaum delta. This result suggests a unifying structure to period doubling phenomena. 

Consequently, there is probably little practical application of the Feigenbaum delta to 

problems in ecology. For most biological populations it is extremely difficult to determine 

the precise conditions where a two-point cycle would give way to a four point cycle for 

instance and therefore to empirically estimate rn.  

The stability of nonlinear models will be determined by a combination of one or more 

parameters that we may call the control parameters. As the value of the control parameter 

varies the behavior of the model may change until it exhibits chaos. There are a variety of 

routes to chaos that different models may display (Hilborn, 1994). In ecological models three 

routes have been seen, (i) period doubling, (ii) quasi-periodicity, and (iii) intermittency 

(Ruxton and Rohani, 1998). We have already discussed the period doubling route. This is 
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one of the most common routes to chaos in ecological models. Quasi-periodicity refers to 

periodic oscillations that are influenced by two or more periods for which the ratio of the 

two frequencies is not a rational number. This gives rise to population trajectories which 

look as though they repeat but in fact do not. As the control parameter is varied the system 

moves from this quasi-periodic behavior to chaos. The presence of multiple frequency 

oscillations can be detected by the use of time series analysis (reviewed in chapter 3). Several 

host parasite models exhibit this form of chaos (Rohani et al., 1994; Rohani and Miramontes, 

1995). Finally intermittency refers to trajectories that show irregularly occurring periods of 

chaos separated by durations of periodic behavior. As the control parameter is varied the 

relative duration of the chaotic episodes becomes longer until the behaviour is always 

chaotic, with no intervening durations of periodic dynamics. Such dynamic behavior has 

been observed in models with two genotypes with different population dynamic parameters 

(Doebeli, 1994) and host parasite models in which the host has three different phenotypic 

classes (Cavalieri and Koçak, 1995). We next review one of the characteristic indicators of 

chaos. 

Having discussed the various routes to chaos, we next review one of the characteristic 

indicators of chaos. Suppose our population dynamic equation predicts a series of 

population sizes (an orbit) that look like, N0, N1, …, Nk.  If we started at a slightly different 

point, say N0 + y0, would the trajectories depart from the previous orbit or stay close to it?  

We can answer this question by looking at the product of the partial derivatives evaluated at 

the original orbit, in a manner similar to our previous stability analysis as follows, 

(2.15)   y g N g N g N y g N yk k k k  
 1

1 1
1

1
0 0

1
0 1 0

( ) ( ) ( ) ( )( ) ( )... ( ) ( ) . 

Whether, the initial perturbation, y0, is growing or shrinking can be assessed by looking at, 

|yk+1|/|y0|.  Formally, the determination of chaotic dynamics will rest on evaluating the 
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Lyapunov exponents (Ott, 1993; Ellner and Turchin, 1995).  For the first order difference 

equations discussed so far there will only be one Lyapunov exponent, although for higher 

dimensional systems the number of Lupanov exponents may be as high as the 

dimensionality of the system.  Since the value of the initial perturbation is arbitrary, let us 

assume that y0 = 1 for the following example.  The Lyapunov exponent, h(N0) is then 

defined as,  

    lim ln lim ln ( )( )1 1 1
0k

y
k

g N

k k

k k


   
. 

Lyapunov exponents that are positive will characterize chaotic systems.  That implies that the 

geometric mean of the first derivatives in equation (2.15) is greater than 1 and thus the 

perturbation from N0 is growing.  There are several methods for numerically estimating 

Lyapunov exponents.  We have used one method described by Ott (1993) to estimate the 

Lyapunov exponents for the linear logistic (2.1) and exponential (2.3) models as a function 

of a1 (fig. 2.4), and the results emphasizes the point that even when the linear logistic and 

exponential models are producing cycles, the Lyapunov exponent will be negative if these 

cycles are stable. 
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SECOND AND HIGHER ORDER MODELS 

This chapter started out with the simplest formulation of the discrete time models, one 

that assumed that population size depends only on the size of the population in the very last 

generation or time interval.  Models that depend on the most recent population size are 

called first order.  If population size depends on two previous population sizes it is second 

order and so on.  There are several important biological phenomena that will cause current 

population size to depend on population size in several previous generations.  Here we 

consider two such phenomena, age-structure and dependence of adult fertility on pre-adult 

density.  In theory, these phenomena may have an important impact on population stability.  
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FIGURE 2.4.  The Lyapunov exponent for the linear (2.1) and exponential (2.3) models of 
population growth as a function of the parameter a1.  The values for a2 were taken from the LH1 
population in Table 2.2.  Each estimated Lyapunov exponent was based on the population sizes 
following from N0 = 650, and y0 = 1.  A total of nine new generations of population sizes would be 
generated and y9 estimated from (2.15).  The first estimated Lyapunov exponent was then taken 
as h1 = y9/10, y9 was then set back to 1 and the process was repeated, now starting at N10.  The 
final estimate of the Lyapunov exponent was based on the average of 1000 sequential values of 
hi. 
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More importantly, if observations are made on populations where these phenomena are 

important, failing to take this into account may give misleading inferences about the stability 

of populations.  We develop these ideas by first discussing populations with age-structure. 

Age-Structure 
If adults survive from one time interval to the next and remain capable of reproduction, 

then we are dealing with an age-structured adult population and this increases the complexity 

of any model attempting to capture the dynamics of such a population.  To illustrate just 

some of the problems generated by age-structure, we consider a very simple model.  We 

assume two adult age classes with population sizes N1t, N2t.  Individuals of both age-classes 

are assumed to be capable of reproduction. If the total adult population size is Nt (=N1t + 

N2t), age-class transitions are given by, 

(2.16)  
N N a a N

N bN
t t t

t t

1 1 1 2

2 1 1

,

, ,

( ),

.




 


 

Thus, the number entering the first age-class depends on the previous total adult population 

size in a density-dependent fashion.  Survivorship from the first adult age-class to the second 

is density-independent and is determined by the survivorship probability, b.  To emphasize 

the dependence on population sizes for more than one generation the recursion for N1,t+1 

can be rewritten as, 

(2.17)    N N bN a a N a bNt t t t t1 1 1 1 1 1 2 1 2 1 1, , , , ,      . 

When b = 0, (2.16) reduces to the linear logistic model (2.1).  The equilibrium adult 

population sizes for (2.16) are, 

(2.18)  
 ( )

( )
,

  .

N
a b

a b

N bN

1
1

2
2

2 1

1 1

1


 

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The general method for the analysis of the stability of systems of difference equations is 

shown in box C.  For the model (2.16) we have ascertained the stability determining 

eigenvalue for a range of b values, using a1 and a2 values from the LH1 population in Table 

2.2 (fig. 5). 

C Stability Analysis for Systems of Nonlinear Equations:  We consider vector valued population 

size data (e g. age-classes) with Nt = (N1, N2, … ,Nd)
T, where the superscript T denotes a matrix 

transpose and d is the total number of different age-classes.  The transition of this vector from 

one time interval to the next is governed by,  

(2.19)  

N g

N g

N g

t t

t t

d t d t
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2 1 2

1
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We assume there is an equilibrium for this system given by,    ,..., N  N Nd

T

1 .  The stability of 

this equilibrium will be determined by the dd, Jacobian matrix (J), which contains the first 

derivatives of the functions in (2.19) evaluated at the equilibrium  N , that is, 

J
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The system’s stability will depend on the modulus of the largest eigenvalue, |*| of J.  For real 

eigenvalues the modulus is just the absolute value.  For complex eigenvalues (a + bi) the 

modulus is equal to, a b2 2 .  If |*| < 1 then the equilibrium, N , is stable.  The eigenvalues of 
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J are found by solving the equation,  det J I  0 , where “det” stands for the determinant of a 

matrix. 

 

 

The example in figure 2.5 shows that age-structure may, under some circumstances, 

stabilize a cycling population.  Interestingly, in this example, stability of a single point 

equilibrium is consistent with intermediate values of survival from the first age-class to the 

second.  Clearly, age-structure is an important detail that needs to be taken into account in 

empirically assessing the stability of a population’s dynamics.  Our qualitative view of 

population stability may be substantially altered when age-structure is included in population 

dynamics models.  It has however, been more difficult to draw any specific conclusion about 
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FIGURE 2.5.  The modulus of the largest eigenvalue for the model (2.16).  The values for a1 and 
a2 are taken from fitting the linear model (2.1) to data from the LH1 population (Table 2.2).  The 
value of the adult survival parameter b is allowed to vary.  When b = 0 the eigenvalue is the same 
as in Table 2.2 (-1.06).  For b > 0 there is a shaded region where the equilibrium (2.18) is stable.  
Thus, the addition of age-structure can make a population that is in a two-point cycle settle down 
to a single equilibrium point if there is moderate survival from the first age-class to the second. 
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the effects of age-structure on population stability that would apply across a broad spectrum 

of biologically relevant situations.  For instance Guckenheimer et al. (1977) conclude that, 

“A general ‘rule of thumb’ appears to be that as the dimensionality of the system increases 

the amount of nonlinearity required to produce complex behavior decreases.”.  In contrast, 

Charlesworth (1994) provides evidence supporting the notion that age-structured 

populations are more likely to exhibit stable behavior.  However, Charlesworth also noted 

that as the pre-reproductive period lengthens this stabilizing effect of age-structure declines.  

Swick’s (1981) position is intermediate, maintaining that age-structure will make it less likely 

to observe higher-order cycles or chaos, but perhaps more likely to induce simple cycles. 

All said, it is clear that when one is assessing data from real populations, attention must 

be paid to the issue of age-structure. For example, suppose a population has age-structure of 

the sort described by equations (2.16), and estimates of total population size at different 

times are collected from this population and used to evaluate the dynamics of the 

population.  If the population is treated as if it did not have age-structure will the correct 

conclusion regarding population stability still be reached? 

To address this question we simulated a series of 20 generations of population growth 

for the model with two age-classes (2.16), adding environmental noise to each adult age class 

in a manner following Dennis et al. (1995), 

(2.20)  
   
   

ln ln ( ) ,

ln ln .

,

, ,

N N a a N

N bN

t t t t

t t t

1 1 1 2 1

2 1 1 2




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


 

The xt were uncorrelated, and was each normally distributed with mean zero and variance 

0.0025.  The resulting  total population sizes are shown in figure 2.6 for three different 

values of a1 with a2 and b being held constant.  Next we applied one of several methods for 

estimating population stability (reviewed in chapter 3) to this simulated data set, assuming 
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that a particular model describes the population dynamics of this system.  Estimates of the 

model parameters were then made from the observed population size variation.  These 

estimates were then in turn used to estimate the stability determining eigenvalue.  This 

eigenvalue may give rise to misleading conclusions about population stability if either the 

parameter estimates are poor, or the original model does not adequately describe the 

dynamics of the population. 

We took the data shown in figure 2.6 and used maximum likelihood techniques to 

estimate the parameters of model (2.17) by letting N1,t = Nt.  These estimates were made 

separately under two different assumptions.  In the first case, we assumed the dynamics were 

first order, so Nt+1 depends only on Nt and therefore b = 0.  In the second case we assumed 

the dynamics were second order and estimated b directly from the observations.  Note that 
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FIGURE 2.6.  Simulated growth of an age-structured population.  Adult population (N1t + N2t) size 
from equations (20) are shown for three different values of a1.  The two curves for a1 = 3.15 and 
3.155 are very close to each other over all 20 generations of data.  The same set of random 

variables, xt, was used in each of the three simulations.  For each simulation a2 = -0.00312 and b 
= 0.43. 
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this second order model is still different than (2.16) since we are only modeling changes in 

total population size. We assume that the different age-classes are indistinguishable.  Using 

the estimated parameters, we then obtained an estimated eigenvalue and compared it to the 

true eigenvalue of the deterministic system (2.16).  These results are shown in table 2.3.  

When a1 is 3.1, the true stability determining eigenvalue has modulus 0.85 (in fact the 

eigenvalue is complex), and thus the system approaches a stable point.  However, when the 

data are analyzed assuming a first order difference equation (e. g. assuming b = 0) the 

TABLE 2.3.  Results of the analysis of the population data in figure 2.6.  The three curves in figure 

2.6 were analyzed assuming a first order difference equation   N N a a Nt t t  1 1 2 1  and a 

second order difference equation    N N bN a a N a bNt t t t t      1 2 1 2 1 2 2  model.  The 

first five rows show the parameter values used to generate the results in figure 2.6.  The last five 
rows show estimates obtained for each of the two models.  The actual eigenvalues (bold) for the 
deterministic model generating these data are shown along with the estimated eigenvalue (bold) 
derived from the maximum likelihood estimates of the model parameters (indicated by the hats 
“^”). 

  First Order Second Order 

 a1 - - - 3.1 3.15 3.155 

True a2 - - - -0.00312 -0.00312 -0.00312 

values b - - - 0.43 0.43 0.43 

  - - - 0.85 0.993 1.005 

 2 - - - 0.0025 0.0025 0.0025 

 a1  3.07 3.07 3.08 2.906 2.919 2.926 

Estimated a2  -0.00271 -0.00265 -0.00266 -0.00225 -0.00222 -0.00224 

values b  0 0 0 0.207 0.206 0.189 

   1.07 1.07 1.08 0.987 1.0012 1.011 

  2  0.00055 0.00059 0.00054 0.000455 0.000463 0.000472 
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estimated eigenvalue suggests the equilibrium point will be unstable.  The second order 

model (table 2.3) does a much better job at estimating the sign and magnitude of the 

eigenvalue.  Of course, we have considered only three examples in table 2.3, and to reach a 

more general result would require a systematic and detailed examination of the two different 

estimation schemes used in table 2.3.  However, these limited results clearly show that there 

is certainly no reason to suppose that ignoring the additional time dependence created by 

age-structure is valid.   

Dennis and Taper (1994) hold out the hope that it may still be possible to model 

population dynamics or some index of population size by simple first order equations under 

appropriate conditions. As an example of this Livdahl and Sugihara (1984) describe a 

method for estimating population growth rates from cohort data in age-structured 

populations. Their index is a function of female survivorship to reproductive age, the size of 

females and the relationship between size and female fecundity. Their method would 

typically apply only to growth rates for populations at a stable-age distribution and in 

populations with high juvenile mortality, negligible adult mortality and female fecundity that 

varies with adult size but not age. Similarly, Barlow’s (1992) method for estimating 

population growth requires a stable size distribution. Barlow’s index assumes fecundity 

depends on adult size, and adult mortality to be age-independent.  

In variable environments or especially in populations that are cycling or chaotic, the 

assumptions of stable-age or size distributions required by Livdahl, Sugihara, and Barlow are 

dubious. Likewise the assumptions about age-specific survival would limit the species and 

populations that these techniques could be used with. The point we wish to stress is that the 

effects of age-structure on population dynamics must be considered carefully when trying to 

analyze data from populations in nature. 
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Pre-Adult Density Affects Adult Reproduction 

Even populations that have fully discrete generations and no age-structure may not be 

properly modeled by first order difference equations if there are particular kinds of 

interactions between different life stages.  Prout and McChesney (1985) were the first to 

study this issue systematically and we will briefly discuss some of the kinds of problems that 

such interactions between life stages may cause in analyzing population dynamic data based 

on censusing only a single life stage.  We will return to this issue in detail in parts of the 

following chapters when we discuss specific model systems. For the present discussion we 

will focus on the kind of general life cycle considered by Prout and McChesney. 

For this type of population, which we illustrate in figure 2.7, a model of egg dynamics is, 

(2.21)  n F n G n nt t t t 1 ( ) ( ) . 

However, if the census stage are adults, Nt (= G(nt)nt = H(nt) ) then the recursion can only be 

reconstructed if the function H(nt) is invertible.  For a variety of species, empirical 

observations suggest that this function will be humped and, consequently, not invertible 

(Prout and McChesney, 1985).  We have reproduced one set of empirical data collected by 

Rodriguez (1989) for Drosophila melanogaster (fig. 2.8).  If a census of this Drosophila population 

showed 150 adults there are two possible egg densities (NL, NU) which could each give rise 

to this number of adults.  Adults raised at a larval density of NL would be expected to be 

 

FIGURE 2.7.  A discrete life cycle with two density-dependent life stages, larval survival and 
female fecundity.  Fecundity is assumed to be a function of the degree of larval crowding. 
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larger than adults raised at the larval density NU.  Since larger females lay more eggs these 

differences in size have important consequences for rates of population growth. 

In these cases, 

(2.22)   N G n n G F n N F n Nt t t t t t t   1 1 1( ) ( ) ( ) . 

However, nt depends on nt-1 and Nt-1 and so on.  For many organisms, the adults are the most 

conspicuous and easily sampled.  Consequently, when adult numbers are counted, but their 

fertility is a function of their pre-adult densities, then the recursion in adult numbers will 

depend on many previous adult densities in a rather complicated fashion. If the underlying 

stability of a population can not be determined from the numbers of adults alone, then 

population studies will be complicated.  Although, in principle, the adult population size may 
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FIGURE 2.8.  The relationship between egg numbers and adult numbers within one generation 
for D. melanogaster (from Rodriguez, 1989). The solid curved line is an exponential model that 
has been fit to these data. An adult population of 150 may have arisen from either an initial batch 
of NL eggs or NU eggs.  The relationship between egg number and adult numbers is not one to 
one. 



Stability in Model Populations  Theory of Population Stability 

L.D. Mueller & A. Joshi  2-31 

depend on many previous population sizes, practically it may be possible to get reliable 

estimates of population stability by examining only a few previous population sizes. 

We examine this problem by investigating one model considered by Prout and 

McChesney (1985).  The combination of a linear survival function and exponential fertility 

yields, 

(2.24)  n F fn S sn nt t t t   1
1
2 exp( )( ) , 

where S is the maximum larval survival rate at low density, s reflects sensitivity of survival to 

larval crowding, F is the maximum fecundity at low density and f measures the sensitivity of 

female fecundity to crowding.  We have used the parameter estimates for these functions 

obtained by Prout and McChesney for D. melanogaster, and estimated an equilibrium egg 

number (1758) and stability determining eigenvalue (-1.25).  We have used (2.24) to simulate 

100 generations of adult population sizes with random noise (fig. 2.9). 

The adult data in figure 2.9 have been used to estimate the parameters of linear logistic 

model (2.1) and the second order linear model, 

(2.25)  N N a a N N b b Nt t t t t      1 1 2 1 2 1 2 2( ) ( ) . 

The equilibrium of equation (2.25) is,   N a b a b   


1 1 1 2 2

1
.  The stability of this 

equilibrium can be assessed by the method described in box D. 
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D Stability Analysis for a kth order Nonlinear Difference Equation:  We consider a recursion for 

population size in which the present population size depends on the previous k-values of the 

population size, 

(2.26)   N H N N Nt t t t k   1 2, ,.., . 

Equation (2.26) can be solved for a point equilibrium by setting N N N Nt t t k    1 ..  .  The 

stability of this equilibrium point can be evaluated by using Taylor’s series to approximate N t   

as, 
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FIGURE 2.9.  Simulated adult and egg numbers, from model (2.24) with random environmental 
noise.  The parameter estimates come from Prout and McChesney (1985) and were: 0.845 (S), 
0.00028 (s), 16.429 (F), 0.001 (f). 
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homogeneous difference equation, 

    t t k t k   1 1 ... . 

The stability determining eigenvalue is the largest among the possibly k-distinct solutions (1, 

2,.., k) of the polynomial (Goldberg, 1958, pgs. 169-171),     k k
k k       
1

1
1 0 .  

For the second-order linear model, (2.25) the coefficients of the stability determining quadratic 

equation are, 
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The maximum likelihood estimates of the adult data in figure 2.9 were obtained for both 

models (2.1) and (2.25).  The eigenvalue for the first order model is -0.73.  Thus, with this 

model the analysis of the adult data suggests the population should be stable.  Results, from 

the second order model are quite different.  The largest eigenvalue for model (2.25) is 1.29.  

In this case the inclusion of an additional generation of adult numbers permits the correct 

evaluation of this population’s stability.  This simple example suggests that when analyzing 

the stability of populations, even for those with fully discrete generations, the details of 

density-dependence effects on various life stages can be critical.  

EVOLUTION OF POPULATION STABILITY 

The analysis of the simple population dynamic models has revealed the dependence of 

population stability on various parameters that affect the density-dependent rates of 

population growth.  MacArthur and Wilson (1967) made the first serious attack on the 

problem of the evolution of population growth characteristics with the articulation of the 

theory of r- and K-selection.  There has been substantial progress in theoretical and 

experimental research in density-dependent natural selection since MacArthur and Wilson’s 
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initial development of the ideas of r- and K-selection (see Mueller, 1997 for a recent review).  

These ideas have suggested that evolution may mold the rates of population growth.  

Biological populations harbor genetic variation for traits affecting the value of population 

growth parameters that, in turn, can affect population stability (Mueller and Ayala, 1981c).  

Clearly, it is plausible to investigate the possibility that density-dependent natural selection 

may also mold population stability just as it may mold population growth rates (Mueller and 

Ayala, 1981a; Mueller et al., 1991). 

Doebeli and de Jong (1999) point out that population stability is enhanced when genetic 

polymorphisms exist for certain population dynamic parameters. Under this theory, stability 

is a by-product of genetic variability rather than a result of directional increases or decreases 

in life-history parameters that accompany natural selection. 

In our view population stability is more likely to be a by-product of individual life history 

traits that are directly connected to genotypic fitness. Thus, natural selection may affect the 

evolution of fecundity and this evolution may reflect the genetic correlations between 

fecundity and other life-history traits. A direct consequence of the evolution of female 

fecundity may be changes in population stability. This view contrasts with others that view 

the dynamical properties of a population as a trait that evolution may mold directly. For 

instance, Ferrière and Fox (1995) speak about adaptive chaos and suggest that “chaos may 

be an easy way to generate variability and uncertainty”.  This suggests that a by-product of 

population dynamics is what drives evolution, whereas we feel that it is the fitness related 

traits of individuals that are the focus of evolution, and that stability characteristics may end 

up being molded indirectly by such evolution. We now review the theory which has been 

developed in this general area. 
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Theories of the evolution of population stability have involved explanations based on 

both individual and group selection mechanisms. The arguments based on group selection 

are that unstable populations will more often have their population size reduced to small 

numbers (Thomas et al., 1980; Berryman and Millstein, 1989). During such a valley in 

population size, extinction may occur, perhaps partly due to enhanced susceptibility to 

environmental variation. To the extent that a species consists of many such populations that 

are essentially genetically isolated (otherwise there will be no between population genetic 

variation), then the environments that remain after population extinction may be recolonized 

by some neighboring population that is presumably more persistent. In the absence of 

empirical data supporting the special population structure needed to make this process work 

it is difficult to take the group selection arguments very seriously. It is also reasonable to 

assume that environmental rather than genetic differences may often be largely responsible 

for the relatively unstable dynamics some particular populations. In such cases, 

recolonization of a habitat patch following extinction may not necessarily represent any 

evolutionary change, being no more than an expression of migration of individuals from a 

habitat patch with an environment supporting relatively stable dynamics. 

Allen et al. (1993) have stood this argument about instability enhancing extinction risk 

on its head, by considering extinction or persistence of sets of populations. They argue that 

if we consider a species consisting of many populations linked by low levels of migration the 

chance of the species becoming extinct is reduced by chaos. This conclusion hinges on the 

notion that chaos will produce uncorrelated variation in neighboring populations. Global 

noise, like weather, will produce correlated variation among the subpopulations, local 

environmental noise will be uncorrelated among subpopulations. Allen et al. suggest that 

chaos amplifies the heterogeneity of the local populations and thus reduce the likelihood of 
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species wide extinction. However, in the absence of this local environmental variation chaos 

does result in increased local and species wide extinction rates.  

On the other hand there are related explanations for the evolution of population stability 

which may be more plausible. For instance populations which do undergo repeated 

bottlenecks due to population size fluctuation may experience increased levels of inbreeding. 

In outbred, highly fecund species inbreeding may substantially reduce fecundity. Since 

population stability is often affected by maximum rates of population growth, which in turn 

depend on fecundity, inbreeding may indeed lead to enhanced stability for certain species. 

However, we expect this type of stability enhancement to be short lived if there is 

immigration from neighboring populations with high fitness, outbred individuals. 

The basic theory of density-dependent natural selection (Roughgarden, 1971) used the 

standard form of model (2.1) to describe population growth, 

(2.27)  N N r
rN

Kt t
t

   




1 1 . 

If genetic variation affects genotypic specific values of r and K then in constant 

environments the outcome of selection depends on the relative population density.  When 

population size is high, selection favors those genotypes with the highest K.  If the 

population is kept at very low densities then selection favors the genotypes with the highest 

values of r.  It is a small step to move from evolution of population growth rates to the 

evolution of population stability. Heckel and Roughgarden (1980) made this step by first 

suggesting that selection would favor reduced values of r in environments where K varied.  

This conclusion follows from the idea developed by Gillespie (1974) that natural selection 

will favor a reduction in the variance in fitness.  By decreasing r in variable environments, 

populations near their carrying capacity may achieve a reduction in the variance in fitness.  
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Thus, for model (2.27) the results of Heckel and Roughgarden suggest natural selection in a 

variable environment will tend to increase the deterministic stability of the equilibrium. 

Turelli and Petry (1980) considered a class of models that had the general form, 

  N N G N Kt t t 1 /


, 

where the function G(.) assumed either a linear, exponential or hyperbolic form.  The 

parameter  has provided a better description of population dynamic observations for some 

organisms and there appears to be genetic variation that affects it’s value (Mueller and Ayala, 

1981c).  Their models permitted environmental variation to affect the carrying capacity or 

density independent growth rates (by multiplying G(.) by 1 + zt where zt has mean zero and 

variance 2).  They found that when the parameter r is allowed to evolve in these equations 

stability may increase, decrease or be unaffected.  However, when  was allowed to evolve 

more consistent results were observed and selection often resulted in population stability. 

Turelli and Petry (1980) dealt with populations that initially had parameter values which 

produced stable dynamics.  Mueller and Ayala (1981b), Stokes et al. (1988) and Gatto (1993) 

have examined the evolution of stability in populations initially at a stable cycle or chaos.  

Typically for these models to cause populations to evolve stable dynamics some type of 

trade-off is required in parameters of the population dynamic models.  For instance, Mueller 

and Ayala (1981b) show that populations may evolve from a two point cycle to a stable point 

if density-dependent viability trades-off with fecundity.  Thus, under these models there exist 

genotypes with increased viability but decreased fecundity.  Nevertheless, these genotypes 

have sufficiently high fitness that they can replace the resident genotype responsible for the 

two-point cycle. Of course, this sort of genotype might be favored even if the population 

wasn’t cycling. However, in most simple ecological models, the highest density in a two-
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point cycle will exceed the carrying capacity and thus the strength of density-dependent 

selection will change. The decrease in fecundity that ensues ultimately stabilizes the 

population.  Gatto (1993) also described conditions under which populations may evolve 

into chaos.  However, fairly special combinations of life history parameters or special 

population structure (Gomulkiewicz et al., 1999) are required for the evolution of chaos.  

Hansen (1992) has suggested that the model dependence of these results may be due to 

the manner in which the models are constructed.  In some cases, like model (2.27) the 

parameter that controls stability (r) is different than the parameter under direct selection at 

high density (K).  In other models this separation is not present.  Hansen suggests that 

selection at low densities will typically favor instability while the opposite will be the case at 

high density. 

The theoretical debate over the evolution of population stability has been aired recently 

(Ferrière and Fox, 1995; Dobeli and Koella, 1996; Fox, 1996). Ferrière and Fox have argued 

that, in principle, natural selection can favor the evolution of chaotic dynamics in 

populations, and this possibility needs to be considered seriously. Dobeli and Koella (1995) 

suggest their own modeling efforts support the notion that selection is more likely to favor 

the evolution of stable rather than chaotic dynamics. The theories of Ferrière and Fox (1995) 

and Dobeli and Koella (1995) have not really clarified any of the issues raised in the previous 

theory considered. For instance neither consider more than one functional form of 

population dynamics, despite Turelli and Petry’s (1980) demonstration of model sensitivity. 

Special assumptions about the relationship of population parameters are ultimately critical to 

the evolution of stability in both models (Ferrière and Fox 1995; Dobeli and Koella 1995). 

A major difficulty with assessing the various predictions of these models is that they 

depend on assumptions that can only be evaluated from empirical studies. For example, it is 
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not clear as to what extent pre-adult survival and fecundity are correlated, or whether one 

can alter  without changing r or K? Some of these issues could be more reasonably assessed 

if the population dynamic models incorporated specific details of important life history 

events of organisms (Christiansen, 1984). An important theme in our chapters on model 

systems will be the use of models that specifically incorporate important life history 

phenomena such as cannibalism in Tribolium or scramble competition for food in Drosophila.  

These models are to some extent less general than some of the simple models discussed in 

this chapter, but are far more useful for the evaluation and design of experiments to critically 

assess predictions from theory. 
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CHAPTER THREE 

Techniques for Assessing Population Stability 

In this chapter, we take up the question of how we can apply the techniques for 

determining the stability of models, reviewed in chapter 2, to data from real populations? 

There are several approaches to this problem each with differing strengths and weaknesses.  

One technique attempts to estimate linear population dynamics in the vicinity of an 

equilibrium directly from observations of population growth rates.  This approach is 

obviously motivated from the mathematical definitions of stability reviewed in chapter 2.  

Other techniques for assessing stability are based on evaluating the time-dependent behavior 

of population growth and using these results to infer the deterministic behavior of the 

population.  This last technique utilizes the tools of time series analysis.   

There are no formal distinctions between techniques that can be used with laboratory 

populations and those which can be used with natural populations.  However, we typically 

have much more information about the factors controlling population growth in laboratory 

populations.  Consequently, techniques based on specific models are more often applied to 

laboratory populations than natural populations.  Nevertheless, we find some techniques, 

like time series analysis, are used with both laboratory and natural populations. Certain 

techniques are useful for distinguishing chaos from other dynamics but do not permit us to 

dissect stable points from stable cycles, while other techniques do not specifically identify 

chaotic dynamics but do differentiate a single stable point from other types of dynamical 

behavior. While many techniques focus on the stability of the deterministic growth process, 

others yield stability estimates for the deterministic and stochastic components of population 

growth. 
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LINEARIZED POPULATION DYNAMICS IN THE VICINITY OF AN 

EQUILIBRIUM 

We saw in chapter 2 that a Taylor series could be used to provide a linear approximation 

to the dynamics of a population in the vicinity of an equilibrium point.  In principle if one 

could collect empirical estimates of rates of population growth in the vicinity of the carrying 

capacity, these could be used to estimate the linear dynamics directly.  The potential 

advantage to this technique is that one doesn’t have to assume that any particular non-linear 

model appropriately describes the processes underlying the growth of the population being 

studied.  For laboratory populations the population growth rates may be collected by 

properly designed experiments over a single generation.  Observations collected in this 

fashion and their stability estimates can then be compared to the time dependent behavior of 

independent populations maintained over many generations.  There are several drawbacks to 

this technique.  For most populations except those in the laboratory, it will probably be 

impossible to collect observations of density-dependent rates of population growth around 

the carrying capacity.  There is also the difficult question of practically defining the region 

about the carrying capacity in which dynamics are expected to be approximately linear.  If 

one chooses a range of densities that are too close to each other, then it may be impossible 

to get an accurate estimate of the slope of the linear dynamics, due to experimental error.  If, 

however, the range of densities chosen is too large then the dynamics are unlikely to be 

linear. 

To our knowledge, this technique has been used only once (Mueller and Ayala, 1981b), 

on laboratory populations maintained by a technique called the serial transfer system (Ayala, 

1965a).  This technique maintains an adult breeding population with overlapping 

generations.  Since it is a fairly complicated technique and has been used in several other 
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studies that will be discussed later, we have outlined the basic steps of the serial transfer 

system here (fig. 3.1).  An adult census is made at regular intervals, usually one week, and 

age-class numbers are unknown.  The total number of adults at the census, Nt, is composed 

of surviving adults from the previous week, g1(Nt-1), and adults who have emerged over the 

last week from bottles which are 2 (g2(Nt-2)), 3 (g3(Nt-3)), and 4- weeks old (g4(Nt-4)) 

respectively (fig. 3.1). The number of cultures maintained may be different than four 

depending on the species of Drosophila used. 

The model shown in figure 3.1 presumes that recruitment from old cultures is 

dominated by the density of adults that originally laid eggs in that culture and is essentially 

 

FIGURE 3.1.  The serial transfer system, used to maintain populations of Drosophila with 
overlapping generations (after Mueller and Ayala, 1981c).  The entire population consists of four 
cultures which have had eggs laid at different times.  At regular intervals, usually one week, adults 
are collected from all four cultures making up the population (cultures with arrows above show 
movement of adults).  These adults are added to a fresh culture, where they will lay eggs for the 
next week, while the oldest culture is discarded.  In principle there is a different nonlinear function 
for each culture, gi(Nt-i) describing the number of adults that emerge as a function of the number of 
adults which laid eggs in that culture i-weeks ago. 



Stability in Model Populations  Techniques for Assessing Population Stability 

L.D. Mueller & A. Joshi  3-4 

independent of the age-structure of the population.  Justification for this untested 

assumption is that in standard laboratory populations the average life span is short (probably 

two-weeks or less), and larval mortality is high due to severe crowding and over production 

of eggs.  Thus, even though newly emerged adults will lay eggs in their larval habitat (e. g. the 

cultures labeled t-2, t-3 and t-4 in figure 3.1), these eggs will almost never successfully 

develop and emerge before the culture is discarded.  Adult population size variation for two 

populations maintained by the serial transfer system for 38 weeks is shown in figure 3.2.   

Rates of population growth at any desired density can be estimated for the serial transfer 

system using single generation experiments.  These single generation experiments place 

adults at the specified density, N*, in a single bottle for one week.  At the end of the week all 
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FIGURE 3.2.  Two populations of Drosophila melanogaster maintained in continuous culture by 
the serial transfer system.  Each population was initially started with 100 adults.  The black line is 
population-8 and the gray line, population-14 previously studied by Mueller and Ayala (1981b).  
Each population had been made homozygous for a whole second chromosome sampled from 
nature.  Using data after the fifth week, the average size of population-8 is 912  72 (95% 
confidence interval) and the average size of population-14 is 1032  80.  These data are also 
given in table 3.1A of the appendix. 
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the survivors are counted and this provides an estimate of g1(N*).  The number of emerging 

adults from this same bottle are counted one week later and provide an estimate of g2(N*).  

Emerging adults are collected and counted at weekly intervals for the next two weeks, 

providing estimates of g3(N*) and g4(N*).  This type of experiment can be repeated at the 

same density multiple times and over a large range of densities.  For the two populations in 

figure 3.2 stability estimates were made from observations of survival and progeny 

production with N* at 750 and 1000 adults for populations 8 and 14.  These two densities 

were chosen because they were thought to bracket the carrying capacities of the populations.  

That appears to have been a good assumption for population-8 but slightly off for 

population-14.  Nevertheless, from these single generation experiments we can derive 

estimates of the carrying capacity for populations-8 and -14 that are independent of the 

observations in figure 3.2 (the raw data from the single generation experiments for 

populations-8 and -14 are in table 3.2A).  These estimates predicted the carrying capacity for 

population-8 was 880 and for population-14, 990 (Mueller and Ayala, 1981c).  Both of these 

estimates are well within the confidence intervals for the continuously cultured populations 

in figure 3.2.  It is heartening that the single generation experiments are capable of 

reasonably predicting the equilibrium population size of the continuously cultured 

population.  Additional details of these experimental protocols are discussed in Mueller and 

Ayala (1981c) and Prout and McChesney (1985). 

From the single-generation experiments a linear model approximates the nonlinear 

functions in figure 3.1, g N a a Ni t i i t( )  0 1 .  The resulting model for Nt is a fourth-order, 

linear nonhomogeneous equation and its eigenvalues are determined by methods described 

in box A below.   
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A Stability of the Serial Transfer System: when the functions in figure 3.1 are linear, the 

population growth model is, N A a N a N a N a Nt t t t t       11 1 12 2 13 3 14 4 , where 

A a i
i

  0 .  The stability determining eigenvalues for this fourth-order, non-homogeneous, 

difference equation, are the roots of the polynomial,    4
11

3
12

2
13 14 0    a a a a .  Using 

the six independent observations of survivorship and progeny production at two densities for 

population-8, given in the appendix (table 3.2A), the estimates of the four coefficients, a11, a12, 

a13, and a14 are -0.476, 0.265, -0.122 and -0.0827 respectively.  The roots of the polynomial, in 

order of their magnitude are, -0.83, 0.36 + 0.39i, 0.36 - 0.39i, and -0.36.  These results may be 

obtained numerically from either commercially available software like Mathcad or Mathematica or 

numerical routines like Laguerre’s method (Press et al., 1986) can be used.  Thus, population-8 

should have a stable equilibrium, although the approach to equilibrium will be oscillatory.  

Depending on the initial conditions the linear dynamics will be affected by all four eigenvalues, 

with the largest dominating asymptotically.  The negative and complex eigenvalues will contribute 

to the oscillatory approach to equilibrium.  If we let 3 and 4 be the real eigenvalues and the 

eigenvlaues which form a complex conjugate be a  bi, the general solution to the non-

homogenous linear equation above will be, 

N C r t C C C Nt
t t t    1 2 3 3 4 4cos( )

~   , 

where the Ci’s are constants determined from initial conditions, 
~
N  is a particular solution to the 

non-homogeneous equation, r is the modulus of the complex eigenvalues and  is the solution of 

sin() = b/r and cos() = a/r (Goldberg, 1958, pgs. 163-164).  Thus, the cosine function 

contributes to the oscillatory approach to the equilibrium with a frequency .  For population-8,  

= 0.825 radians (or 0.13 cycles).  For population-14 the polynomial coefficients, a11, a12, a13, and 

a14 are 0.23, -0.41, 0.0027 and 0.33 respectively.  The roots in order of magnitude are, 0.075 + 

0.89i, 0.075 - 0.89i, 0.68, and -0.60.  The largest eigenvalue is complex with a modulus of 0.89.  

Thus, the equilibrium of population-14 should also be stable although the approach to equilibrium 

will be oscillatory with a frequency due to the complex roots of 1.49 radians (0.236 cycles). 
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The largest eigenvalues derived here are slightly smaller than the values reported in Mueller 

and Ayala (1981b) as a result of a different estimation procedure.  Mueller and Ayala used the 

jackknife technique and obtained values of 0.96 and 0.93 for the modulus of population-8 and 

population-14’s largest eigenvalue respectively.  The jackknife technique is a numerically 

intensive technique related to the bootstrap that can potentially reduce bias (Miller, 1974; Efron 

and Tibrashini, 1993).  The difference in estimates observed here is a reflection of this bias.  In 

practice we would recommend using either the jackknife or the bootstrap to estimate the largest 

eigenvalue.  These procedures can be used to reduce bias and construct confidence intervals 

around the final estimates. 

Although Mueller and Ayala (1981b) appear to be the only ones to have used this 

linearization procedure to estimate population stability, several other studies have used rates 

of population growth from the serial transfer system to study population stability and other 

problems (Thomas et al., 1980; Hastings et al., 1981; Pillippi et al, 1987).  In these studies 

population growth rates were empirically determined using the single generation experiments 

previously described.  However, these studies assumed that population dynamics in the serial 

transfer system could be described by a first-order difference equation, 

N h Nt t ( )1 . 

Then the function h(Nt) was estimated from the single-generation experiments described 

earlier by letting, h N g Ni
i

( ) ( )* *  .  This summation is sometimes called the total 

productivity, since it represents the sum of all survivors and progeny.  This model ignores 

the complicated time-dependence of egg laying in the serial transfer system and would not be 

expected to yield estimates of growth rates that are relevant to populations maintained by the 

serial transfer technique.  In fact it is not clear if there is any population whose growth rates 

are estimated by h(N*). 
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MODEL BASED ESTIMATES OF STABILITY 

The technique that we consider next is based on the use of specific non-linear models to 

infer stability.  We will separately consider two major variations of this technique.  The first 

variation assumes that a particular model provides a proper description of population 

dynamics for a given system, and then uses observations from populations are to estimate 

the model parameters.  The second variation presumes ignorance of the appropriate model 

and uses the observations from biological populations to both determine the best model and 

estimate it’s parameters. 

In both cases, once a population model is chosen and its parameters estimated then 

stability of the resulting equilibria can be determined either by the techniques outlined in 

chapter 2 or by numerical techniques.  Usually, numerical techniques will be used when the 

model is sufficiently complicated to defy simple analysis of the equilibria.  The advantage of 

the first approach is that the observations from the populations of interest are used only to 

provide estimates of model parameters.  The uncertainty in these estimates can be readily 

estimated and thus the uncertainty in the final conclusions is readily quantified.  Of course 

the reliability of this method is directly related to the strength of support for the original 

model being a good descriptor of the dynamics of the system under study.  Except for 

laboratory populations there will be few populations where great certainty about the 

appropriate growth model exists.  For most populations the observations will be used to 

both determine the best model and estimate stability. 

Models Chosen a-priori 

The first serious attempt to assess the stability characteristics of natural populations was 

a survey of published data by Hassell et al. (1976).  In this study stability was assessed 

through the magnitude of the parameters of a single population growth model, 
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(3.1)   N N aNt t t


 1 1


. 

For this model, the equilibrium population size is given by, 

 
exp ln( )

N
a


  1 1

, 

and the stability determining eigenvalue is, 

 1 1 1      exp ln( ) / . 

Hassell et al., use a variety of ad hoc techniques to estimate the parameters of equation (3.1). 

For instance observations of maximum female fecundity were used to determine .  The rate 

of population growth, according to (3.1), should be equal to  at low density.  However, the 

very rough motivation for the use of (3.1) with these data make it unlikely that fecundity data 

will provide accurate estimates of growth rates () at low density.  Hassell et al. also use a log 

transformation of (3.1) so that linear regression techniques may be used to estimate .  This 

procedure will not yield the same estimate of  as nonlinear regression on the untransformed 

data.  Finally, the qualitative assessment of stability may depend critically on the precise 

model used.  Morris (1990), who also reanalyzed some of the data in Hassell et al, made this 

last point.  Morris showed that the use of standard non-linear regression techniques and 

different growth rate models significantly affect the results of this type of analysis. 

Rodriguez (1989) took a substantially different approach to the analysis of population 

stability.  Rodriguez studied laboratory populations of Drosophila melanogaster, kept on a fully 

discrete regime of reproduction without age-structure.  The life cycle was separated into pre-

adult survival and female fecundity.  Survival (V(nt)) was assumed to be a function of egg 

density (nt) while female fecundity was a function of both egg density and adult density 

(R(Nt, nt)) (see chapter 6 for more details).  Rodriguez then estimated the parameters of the 
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survival portions of this model from direct experiments in which eggs were crowded at 

different densities and the number of survivors counted.  In a similar fashion separate 

experiments were used to estimate the fecundity of females raised at different egg densities 

and cultured at different adult densities.  The resulting model of egg density (nt,) dynamics 

can be written as, 

(3.2)  n n V n R N nt t t t t    1 1
1
2 1 1( ) ( , ),  

where egg-to-adult survival is modeled by an exponential function, 

V n S snt t( ) exp( )  , 

female fecundity, which is a function egg and adult density (Nt), is given by, 

 R N n F f N f nt t t t( , ) exp( ),  1 2  

and adult numbers are, N n V nt t t ( ) .  The stability determining eigenvalue of (3.2) is given 

by, 

(3.3)         1 11 2sn n f S sn sn f  exp( )( ) , 

where n  is the equilibrium egg number obtained from equation (3.2). The parameter 

estimates were substituted into equation (3.3) and yielded 0.064 as an estimate of the stability 

determining eigenvalue suggesting a stable equilibrium with a smooth approach to 

equilibrium.  In arriving at this result Rodriguez used only observations from parts of the life 

cycle.  These parts were then reconstituted through equation (3.2) to complete an entire 

generation.  This approach to estimating population dynamics is similar to the analysis of 

fitness components in population genetics (Prout 1965, 1971a,b). 

Rodriguez also collected nine generations of total egg numbers from 25 replicate 

populations, but did not use them for parameter estimation.  However, Turchin (1991) did 

use these data to estimate population dynamic parameters.  Turchin used a general first order 
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difference equation that we describe in more detail in the next section.  The stability 

determining eigenvalue was -0.59 for this model.  Time series analysis of Rodriguez’s data 

suggested a possible damped oscillation towards an equilibrium point.  The eigenvalue 

obtained by Turchin is consistent with this result.  However, is Turchin’s result at odds with 

the eigenvalue estimated by Rodriguez? 

The difference between the results of Turchin and Rodriquez could be due to (i) the 

different models used in the analysis, (ii) the different data used to estimate parameters, or 

(iii) both of these factors.  The second choice is probably important because the technique 

employed by Rodriguez makes some assumptions that may be violated in the running 

populations analyzed by Turchin.  For instance the larval and adult density effects on 

fecundity are assumed by Rodriguez to act independently.  It may not be the case that the 

effects of 500 small adults on female fecundity are the same as 500 large adults in which case 

this independence assumption will be violated.  Secondly, the collection of data on life cycle 

components by Rodriguez differed in some small but possibly significant ways from the 

conditions in which the running populations were maintained.  For instance, the effects of 

adult crowding on female fecundity were measured in 6-dram vials while the running 

populations were maintained in 8-dram vials.  Taken separately, these factors may have been 

small but together their effects could be enough to account for the quantitative differences 

observed in the estimated eigenvalue.   

It is also plausible that a confidence interval on the eigenvalue estimated by Rodriguez 

would include negative values.  There are several possible ways to place a confidence interval 

on the eigenvalue given by (3.3).  One simple method that utilizes a Taylor series 

approximation is called the delta method (Kendall and Stewart, 1969).  Applying the delta 

method to the estimated value of (3.3) suggests the 95% confidence interval is, 0.064  0.18 
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(see box B).  Consequently, the results of Rodriguez are not inconsistent with a negative 

eigenvalue. 

B Delta Method: the basic problem is to estimate the variance of a complicated function of a 

random variable or vector.  Suppose we need to estimate the quantity M, which is a complicated 

function of k parameters, c1, c2, …, ck, e. g. M = F(c1,c2,., ck).  We assume that we can obtain 

estimates of the parameters,  , c c1 2 , etc.  These in turn are used to estimate M so, 

 (  ,  , ,  )M F c c ck 1 2 .  The function F() can be approximated by a Taylor series by expanding 

the function around the expected value of the parameters,  

(3.4)   ( ), ( ), , ( ) (  ( )) | (  ( )) |( ) ( )M F E c E c E c c E c
dF

dc
c E c

dF

dck c E c k k
k

c E ck k
         1 2 1 1

1
1 1

. 

Noting that    Var M E M F E c E ck(  )  ( ), , ( )  1

2
, we get the following estimate of 

variance, 

(3.5)  Var c
dF

dc
Cov c c

dF

dc

dF

dci
ii

i j
i jj ii

(  ) (  ,  )






  



2

. 

In practice we replace E ci( )  with ci  when we finally estimate Var( M ). We now apply this 

technique to the eigenvalue, in equation (3.3).  The two experiments used to estimate S and s 

were different from those used to estimate f1 and f2.  The estimates of S and s were consequently 

independent of f1 and f2.  Applying (3.5) to (3.3) results in, 

(3.6)  
Var Var S Var s Var f Var f

Cov Ss Cov f f

( ) ( ) ( ) (  ) (  )

( ) (   )

    

   

   

 
1
2

2
2

1 3
2

2 4
2

1 2 1 2 3 42 2
 

where, 
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











1 1

2
2

1

3
1

4
2

1

2

1

    

     

    

  

d

dS
nf sn S sn

d

ds
n n f S sn sn

d

df
n S sn sn

d

df
n

  (  ) exp(   ),

  exp(   )(  ),

 exp(   )(  ),

.

 

We have used the data in figures 2 and 5 of Rodriguez (1989) and non-linear regression 

techniques (Gallant, 1975) to estimate the covariance term for the survival model ( Cov Ss( ) ) and 

the variances and covariances for the fecundity model (Var f Var f Cov f f(  ), (  ), (   )1 2 1 2and ) with 

the results that Var f Var f(  ) . , (  ) .1
6

2
7686 10 325 10     , Cov Ss( )  1.59  10-6, and 

Cov f f(   )1 2  -1.3  10-6.  The other terms in (3.6) are given in Rodriguez and they are, Var(S) = 

0.00139 and Var(s) = 3.6  10-9.  The parameter estimates were f1 = 0.1125, f2 = 0.000855, S = -

0.5106, s = 0.001335.  The estimate of the variance of   obtained by substituting these values 

into (3.6) is 0.00808.  The confidence interval is derived assuming that the estimated eigenvalue 

is normally distributed, e.g. 1.96 times the square root of the variance. 

As a last example we consider several papers which have used different models to 

estimate the stability of populations of D. melanogaster maintained by the serial transfer system 

(Thomas et al., 1980; Mueller and Ayala, 1981b; Hastings et al., 1981; Philippi et al., 1987).  

As discussed earlier, several studies have assumed that the serial transfer system can be 

modeled by a first order difference equation.  When this is done the net productivity statistic 

(which is the productivity minus the starting density) dramatically overestimates growth rates 

at low density.  For instance, when productivity is used to estimate growth rates for 

population-8 and -14 in figure 3.2 and the results are fit to the logistic equation, the estimates 

of r are 14.0 and 15.0 respectively. Thus, the stability determining eigenvalues are 13 and 14 
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(compare to the direct estimates of the eigenvalues in box A).  This would suggest chaotic 

population dynamics, a conclusion that is not supported or remotely suggested by any other 

analysis of these data.  Nevertheless, Hastings et al. (1981) developed a boundary layer model 

of population dynamics that would produce very high growth rates at low density but still 

exhibit stable dynamics about the carrying capacity.  In effect the model of Hastings et al. 

was motivated by an incorrect analysis of the experimental data rather than a novel biological 

phenomena.  In these examples, the problems with the analysis are not with the specific 

models chosen but with the techniques used to estimate population growth rates from 

experimental observations. 

There are several other studies which use specific models to estimate stability, especially 

for laboratory populations of blowflies (Stokes et al., 1988) and Tribolium (Costantino and 

Desharnais, 1991; Costantino et al., 1997; Dennis et al., 1995).  We discuss these studies in 

more detail in chapters 4 and 5 respectively. 

Models Estimated from Data 

For many populations, especially natural populations, the most appropriate model of 

population dynamics is often unknown.  In such cases one can use observations on 

population size variation over time to estimate the best population dynamic model.  The 

techniques we describe here are all different variants of regression analysis.  Below we will 

describe several techniques for objectively choosing the best model.  Once the model has 

been chosen and its parameters estimated the stability of the population may be inferred 

from the same sort of techniques used previously. 

Turchin (Turchin, 1990; Turchin and Taylor, 1992; Ellner and Turchin, 1995) has used a 

technique called the response surface method (RSM).  The general form of the model is, 

(3.7)    log( / ) , ,...,N N P N N N et t q t t t d t
d

    1 1 2
1 2   , 
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where Pq is a polynomial of degree q and  are set to a range of values (e. g. to -1, -0.5, 0, 

0.5,…,3), et are exogenous factors, like weather etc., and d is called the embedding dimension 

and as discussed in chapter 2 depends on factors like age-structure and life stage interactions.  

Expressed this way standard linear regression techniques may be used to estimate the 

parameters of (3.7).  For instance, when analyzing the Drosophila data collected by Rodriguez, 

the embedding dimension is 1 since there was no age-structure and egg numbers were 

counted, consequently the model, 

log( / )N N a a Nt t t  1 0 1 1
 , 

was used.  Turchin’s estimate of stability was unaffected by making the polynomial second 

order. 

A difficult question that must be answered when applying (3.7) is what value should d 

and q be?  The answer to these questions will be guided by the general rules of variable 

selection in regression analysis.  If one simply looks at the proportion of the total variance 

explained by the regression model, R2, this quantity will typically increase with increasing d 

and q.  In the limit one can derive an nth order polynomial which will pass through all n+1 

points in the regression.  This interpolating polynomial will typically give poor estimates of 

future observations.  As with many estimation problems, the selection of the “best” 

regression model involves weighing trade-offs between variance and bias (see box C below).  

Several techniques have been proposed to aid in evaluating different regression models that 

we review briefly in box C.  These techniques all attempt to achieve a balance between 

models which increase the congruity between observations and predictions and the 

complexity of the model. 
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C Variable selection in regression models: for the discussion that follows we will change our 

notation so that the results can be presented in a more general setting.  Suppose we have n-

observations of a dependent variable, yi (i = 1,…, n), that are linear functions of k-independent 

variables, x1, x2, …, xk and have a common variance 2.  For population growth models yi might 

be the population size at some time, t, and the xi’s might be previous population sizes or 

populations sizes squared etc.  Thus, the model for the ith observation is, 

Y x x xi k k        1 1 2 2 . 

For the entire set of data the model may be written in matrix notation as, 

Y X  , 

where Y is a n  1 vector of observations, X is the n  k design matrix and  is the n  1 

parameter vector which we will estimate by least squares techniques.  The least-squares 

estimate of  is given by, 

  


X X X YT T1
, 

where T denotes a matrix transpose.  The covariance of   is given by, 

 Cov T(  ) 


X X
1 2 . 

Suppose we assume that the last k-p parameters are zero, e.g. p+1 = ..= k = 0.  Under this 

assumption let 
~
  be the least squares estimate of .  It turns out that the variance of predictions 

based on the more complicated model is greater than the variance of predictions based on the 

simpler model.  In other words the model predictions using   has greater variance than 

predictions based on 
~
  (Walls and Weeks, 1969), 

Var VarT T(  ) (
~

)    , 

where  is a vector of the independent variables.  Of course if the last k-p parameters are not 

zero then 
~
  will be biased.  Hence, the practical problem is deciding when to stop adding 
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parameters to the model because the reduction in bias does not compensate for the increased 

prediction variance. 

One way to incorporate the joint properties of bias and variance of an estimator is through the 

mean squared error that equals the variance plus the bias squared.  One method for variable 

selection proposed by Mallows (1973) is to choose parameters which minimize the mean 

squared error of the predictor variables Yi .  Let the residual sum of squares (RSS) for the p-

parameter model be, (  )Y Yi i 2 , then Mallows cp is defined as,  
RSS

n p
p


( )

 2 2 1   .  The 

model with the smallest value of cp would be selected.  The variance,  2 , is estimated from the 

full model with all k parameters as, RSSk/(n-k). 

The statistic called prediction sum of squares or PRESS is based on the ability of the 

regression model to accurately predict new observations (Allen, 1971).  PRESS is a form of cross 

validation computed by deleting the ith observation from the data set and then using the 

remaining n-1 data points to estimate, i .  PRESS is then computed as, 

 1 2

n
Y Yi i

i

   , 

where Y i  is the prediction based on the estimates, i .  

Ellner and Turchin (1995) proposed another cross validation statistic, 

V
RSS

n pcc  








2

. 

In their study Ellner and Turchin set c = 2. 

We next apply the response surface method to the Drosophila population data in figure 

3.2.  We have fit these data to first, second and third order models.  All models include a 

single constant term. Two regression parameters for each embedding dimension were 

estimated for the independent variables Nt
  and Nt

2 .  Separate models with  set to -1.5, -

1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were examined.  For each model we estimated V2, 
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Cp and PRESS to aid in the evaluation of the best model.  PRESS was computed by 

numerically removing one observation at a time and estimating the regression coefficients on 

the remaining data.  This must be done carefully since the deletion of a single observation in 

the time series often affects several results.  For instance when fitting a third order model, 

when Nt is deleted one can no longer predict, Nt+1, Nt+2 and Nt+3.  Since the models with  > 

1.5 uniformly performed poorly these results are not shown in table 3.1. 
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TABLE 3.1. Results of the response surface method on the two populations of Drosophila. The 
minimum value for each statistic is shown in bold. 

 Population-8 Population-14 

Model/ V2 Cp PRESS V2 Cp PRESS 

First-order       

-1.5 0.036 74 3.0 0.017 69 1.4 

-1.0 0.033 69 0.86 0.015 62 0.37 

-0.5 0.015 36 0.79 0.0069 34 0.31 

0 0.015 37 0.35 0.0089 42 0.17 

0.5 0.017 41 0.20 0.0091 43 0.13 

1.0 0.035 73 0.17 0.024 88 0.14 

1.5 0.049 92 0.19 0.032 105 0.15 

Second-order       

-1.5 0.031 58 4.9 0.0057 24 1.7 

-1.0 0.024 48 1.1 0.0048 20 0.41 

-0.5 0.0064 13 4.0 0.0023 7.0 0.11 

0 0.0079 17 0.72 0.0024 7.3 0.078 

0.5 0.0071 15 0.15 0.0025 7.8 0.089 

1.0 0.039 67 0.18 0.033 90 0.18 

1.5 0.062 92 0.19 0.040 101 0.15 

Third-Order       

-1.5 0.0068 12 0.41 0.0051 17 1.1 

-1.0 0.0074 13 0.20 0.0053 18 0.24 

-0.5 0.0056 9.0 1.3 0.0036 12 0.81 
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0 0.0059 9.8 0.28 0.0037 12 0.13 

0.5 0.0066 11 0.16 0.0047 16 0.11 

1.0 0.024 39 0.14 0.0063 21 0.098 

1.5 0.048 63 0.14 0.0085 28 0.064 

The performance of V2 and Cp are very similar with these data because they both depend 

on the residual sum of squares.  On the other hand for these populations PRESS suggests 

the best model is different than the best model identified by V2 and Cp.  We have next 

determined the largest eigenvalue for the range of models that received support by any of the 

selection statistics. 

TABLE 3.2.  The largest eigenvalue (or modulus in the case of complex numbers) for several 
RSM models and two populations of Drosophila. 

Model/ Population-8 Population-14 

Second-Order   

-0.5 - 0.77 

0 - 0.75 

Third-order   

-0.5 0.74 - 

0 -0.60 0.75 

0.5 -0.63 0.69 

1.0 0.69* 0.63 

*Complex eigenvalue 
- not one of the best models 
 

In all cases the different models predicted a stable point equilibrium.  In this regard the 

results in table 3.2 are also consistent with the stability estimates from the single generation 

experiments in box A.  In the case of population-14 the numerical estimate of the largest 
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eigenvalue was also consistent between models.  However, for population-8 the largest 

eigenvalue was positive, negative or complex depending on the model used.  Obviously for 

these regression techniques to be useful it is important that their qualitative predictions of 

stability do not change radically as the model structure is changed slightly.  There has not 

been much research on this particular problem and a more systematic exploration of the 

RSM techniques than the work in table 3.2 ought to be pursued. 

TIME SERIES ANALYSIS 

Even populations that are governed by simple models of density-dependent growth will 

vary over time due to random phenomena.  If the expected value of the population size is 

independent of time then the stochastic process is stationary.  The deterministic component 

of these types of stochastic processes can be inferred from time-series analysis.   

Turchin (Turchin, 1990; Turchin and Taylor, 1992) has been responsible for the most 

recent use of time-series for the elucidation of population stability (for general reviews of 

applications to population dynamics see Royama, 1991).  As a tool in ecology, time series has 

been used much earlier to look at the cyclic nature of the predator-prey cycles (Moran, 

1953), as well as to model population dynamics in variable environments (Roughgarden, 

1975).  Turchin and Taylor describe several general patterns for the autocorrelation function 

(box D) which are expected under different types of population regulation models.   

D Time Series, the Autocorrelation and Spectral Density Functions: a statistical time series 

may be a continuous or discrete time varying function, x(t), which is subject to random variation 

(Jenkins and Watts, 1968).  Observations made at different times are generally not independent 

of each other but may be related by some linear or nonlinear function.  When the underlying 

process which controls the time series reaches an equilibrium or steady state the process is 

stationary.  The value of x(t) will not depend on the absolute time for a stationary process.  Most 
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of the techniques and analysis of time series require the assumption of stationarity.  An 

informative property of a time series is the autocorrelation function, x(k).  The autocorrelation 

function defines the correlation between observations separated by k-time units (often k is 

referred to as the lag).  For a stationary process the autocorrelation functions depends only on 

the time separating the observations not the absolute time.  We define the autocorrelation 

function as, 

 


 x
x t x t k

k
Cov x t x t k

( )
( ), ( )

( ) ( )






, 

where x(t) is the standard deviation of the random variable at time t.  The stationarity assumption 

leads to the natural conclusion that x(t) = x(t-k) = , and therefore, 

 


x k
Cov x t x t k

( )
( ), ( )




2 . 

For finite data sets the number of observations available to estimate the autocorrelations 

decrease with increasing k.  Suppose population sizes are estimated for 10 generations yielding 

N1, N2, …, N10.  From these observations there are only 2 pairs of points to estimate (8) (N1, N9 

and N2, N10) but nine pairs to estimate (1).  For this reason the most accurate estimates of 

autocorrelations will be those at the small lags. 

The autocorrelation is one technique for studying time-series and is usually referred to as an 

analysis of the time-domain.  The variance of a time-series can be decomposed into sine and 

cosine waves of different frequencies.  These techniques are called analyses in the frequency 

domain.  The spectral density function describes the relative contribution to the total variance of 

periodic functions with different frequencies.  Random variables that are uncorrelated over time 

have roughly equal contributions to their variance from periodic functions of all frequencies.  In 

this sense these random variables resemble white light which results from mixing light of many 

wavelengths.  Consequently, these types of random variables are sometimes called white noise.  

Some time-series may have strong periodic components and these will show up as a peak in the 

spectral density function.  For time series with observations made at M regular time intervals the 

highest frequency that can be detected are signals with periods of two time units or frequencies 
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of 0.5 cycles per time unit.  Higher frequency oscillations will simply be undetectable because the 

signal may undergo several unobservable cycles between sample points.  The lowest frequency 

will be oscillations with periods equal to M or frequencies of M--1 cycles per time interval.  Again 

lower frequency oscillations could not be detected since the sample size is not sufficient to 

observe at least one complete cycle.  The techniques for estimating the spectral density functions 

are somewhat complicated (see Jenkins Watts, 1968, chapter 6 for details) and typically utilize 

certain smoothing functions which attempt to balance the joint problems of bias and variance.  

These smoothing functions or windows can reduce the variance of the estimator considerably by 

using many adjacent estimates of spectral density but this process also introduces bias.   

In chapter 2 the departures from an equilibrium, t, for the discrete time models were 

represented as a first order autoregressive process, 

 t ta 1 , 

where a is the first derivative of the density-regulating function evaluated at the equilibrium 

point.  If we assume the mean of t is zero and the variance is 2 then, 


 


 


 



 ( )

( ) ( ) ( )
k

Cov E E a a
at t k t t k

k
t k t k

k
k       

2 2 2

2

2 . 

Populations with positive eigenvalues (0 < a <1) produce positive autocorrelations which 

geometrically decline as observations get further apart (fig. 3.3).  This result says that 

observations that are closest tend to be similar in value, and as more distant observations are 

compared the resemblance of the two observations becomes weaker.  With negative 

eigenvalues (-1 < a < 0) the sign of the correlation changes with each lag.  Thus, the 

correlation is negative with odd lags and positive with even lags and all correlations decline 

in magnitude with increasing lags (fig. 3.3).  This type of behavior is generated by the 

oscillatory approach to the equilibrium. 
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With a little more work we can also derive the expression for the spectral density 

function for the first-order autoregressive process (Jenkins and Watts, 1968, pg. 228) as, 






( )
cos( )

f
a a f


 

2

21 2 2
, 

where 2 is the variance of the random noise and f is the frequency. For positive values of a 

(the stability determining eigenvalue), the spectrum is dominated by low frequency signals 

(fig. 3.3) while for negative values of a, the spectrum is dominated by high frequency 

components. 

We next consider populations in a stable cycle.  Suppose the population is at a stable 2-

point cycle with equilibrium points,  , N N1 2 .  Population sizes separated by an even number 
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FIGURE 3.3.  The autocorrelation and spectral density function for a first order autoregressive 
process. For a stable population with positive eigenvalues the autocorrelations are always 
positive and decrease with increasing lag. For stable populations with negative eigenvalues the 
autocorrelations are negative for odd lags and positive for even lags and decrease in magnitude 
with increasing lag. Populations with positive eigenvalues exhibit most of their variation in the low 
frequency part of the spectrum while the populations with negative eigenvalues are dominated by 
high frequency variation.  
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of time units will be close to the same equilibrium point and thus positively correlated with 

each other, while the population sizes separated by odd numbers of time units will be at the 

alternate equilibria and thus negatively correlated.  The magnitude of these correlations 

should also get weaker with increasing lag due to multiple time intervals of intervening  

random noise. To illustrate this the autocorrelation function for the adult data in figure 2.9 

are shown below (fig. 3.4).  In this example the relatively small amount of environmental 

noise results in a very slow decay in the magnitude of the correlation function with time.  If 

there were no environmental noise then the correlation would be 1.0 for all even lags and -

1.0 for all odd lags. 
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FIGURE 3.4.  The autocorrelation function and spectral density estimated from the adult data in 
figure 2.9. These data were in a two-point cycle with a relatively small amount of noise added to 
each generations population size. Population sizes separated by an even number of generations 
(lags) are close to the same equilibrium point (either the valley or the peak) and thus show strong 
positive correlations. Population sizes separated by an odd number of generations are at 
opposite positions (one at a peak the other at the valley) and thus show a strong negative 
correlation. The spectral density is dominated by the high frequency oscillations. 
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These techniques are next applied to the Drosophila data analyzed previously (fig. 3.5). 

These results show that neither population appears to be in a two-point cycle nor in a simple 

oscillatory approach to equilibrium.  In fact the patterns are most similar to the stable 

equilibrium with a positive eigenvalue except for the peaks in the spectral density function 

which suggest middle range oscillations.  These periodicities may in fact be due to the 

complex eigenvalues which will create an oscillatory approach to equilibrium as outlined in 

Box A.  The arrows show the predicted frequencies of these oscillations that are reasonably 

close to the observed peaks.  The difference between the observed and predicted frequency 

peak is greater for population-14.  This may be due to the use of densities that did not 

bracket the carrying capacity and hence provided less accurate information about the local 

linear dynamics of population-14. 
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CHAOS 

The great attraction of chaos for population biologists is because data from real 

populations often look more similar, at least superfically, to chaotic trajectories than to the 

trajectories predicted by our simple models.  There is little argument over the presence of 

noise in natural populations (both environmental noise and noise in the estimates of 
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FIGURE 3.5.  The autocorrelation coefficient for the two populations of Drosophila shown in 
figure 3.2.  The data was first log transformed and then any linear trend was removed.  In both 
populations a strong positive correlation between neighboring observations rapidly decays to 
zero as the observations become more distant but then become slightly negative. The spectral 
density function for population-8 shows a peak around a frequency of 0.12-0.14. Population-14 
shows a peak around 0.28-0.30. The arrows show the frequency of expected peaks from the 
stability analysis (Box A). 
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population size) but it is important to know if most variation in population numbers is due 

to these extrinsic sources of noise, or if the noise is internally generated by the density 

regulating mechanisms. It will be important to keep in mind that the dynamics of all real 

populations are stochastic. For that reason the dynamics of real populations can’t be chaotic 

since chaos is a property of deterministic systems. Stochastic systems may have properties in 

common with chaotic systems, like positive Lyapunov exponents, but it will be important to 

keep separate the behavior of the stochastic system from that of the underlying deterministic 

system.  

Time Series 

Recently, the patterns of spectral density functions have been used to assess the 

likelihood of chaotic dynamics (Cohen, 1995). Since most long term records are for natural 

populations an important component to this evaluation is some impression of the spectral 

density functions due to random environmental variation. At first it might seem that most 

environmental noise would be white. This would clearly depend to some extent on the 

sampling period. Thus, local temperature will show strong correlations from one time point 

to the next when sampled at 24 hours intervals. However, over yearly intervals the 

correlation will be weak or zero. Steel (1985) presents data that suggest atmospheric 

temperature shows white noise variation for short intervals of time up to about 50 years. 

After 50 years there is an increasing contribution of periodic components with long 

wavelengths or low frequencies. This increase in the spectral density at low frequencies is 

sometimes referred to as a red spectrum, as an extension of the analogy to frequencies of 

visible light. This pattern is even more pronounced in ocean temperatures that show a 

spectral density that continuously increases in proportion to 1/frequency2.  
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If these very long term environmental fluctuations forced ecological systems to jump 

between alternative equilibria then the long term spectrum of population numbers would 

also exhibit a red spectrum (Steel, 1985). The direct analysis of long time series of Chinese 

locus (Sugihara, 1995) and indirect inferences from several other species (Pimm and 

Redfearn, 1988; Ariño and Pimm, 1995) suggest that there may be significant redness in 

these spectra. Cohen’s paper (1995) was seen as presenting a new ecological dilemma when 

he noted that many simple population growth models yield significantly blue spectra under 

conditions that produce chaotic dynamics. As we have seen in the previous sections, 

populations in stable cycles or an oscillatory approach to equilibrium will also exhibit blue 

spectra (assuming small levels of white noise). On the other hand populations with strong 

stable equilibrium point will exhibit red spectra (again assuming low levels of environmental 

white noise).  

What should be made of Cohen’s observations? Sugihara (1995) suggests they raise the 

specter of environmental determination of population patterns (red spectra) vs. population 

regulation (blue spectra). We feel that the significance of these findings has been somewhat 

overstated and the ultimate utility of time series spectra for evaluating the potential for chaos 

in natural populations is weak. Several points need to be considered. The first is the utility of 

the existing time series. The Chinese locust data is one of the longest spanning about 1000 

years. While one can make out a slight increase in the magnitude of the spectrum at low 

frequencies, it is not nearly as dramatic as similar data for physical factors like temperature. 

One could imagine that these data may be subject to long term cycles in their quality. Thus, 

due to political and financial resources the census data may be subject to periods of good 

collection (in which a large fraction of the population is accounted for) and periods of poor 

collection (where a much smaller fraction of the population is accounted for). This type of 
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fluctuating effort may resemble the ecological model developed by Steel (1985) that also gave 

rise to a red spectrum. Currently it appears that only a small fraction of natural populations 

can be classified as chaotic (see chapter 7). Other models of population dynamics can 

produce red and white spectra (White et al, 1996). Thus, the observation of a red spectrum 

may eliminate a certain class of chaotic models, but it is not strong evidence of the lack of 

chaos and certainly not strong evidence for the primacy of environmental effects. 

Detecting Chaos 

Schaeffer (1984) examined the long term data on lynx skins shipped by the Hudson Bay 

Company in Canada.  In this study Schaeffer used three year running averages to construct a 

third order model by the technique of cubic splines.  From the resulting model he then 

inspected the trajectories in three-dimensional figures to see if one could detect evidence for 

folding and stretching of the trajectories.  When trajectories fold and stretch they give rise to 

the sensitive dependence on initial conditions, which is a hallmark of chaos.  The qualitative 

manner in which these techniques need to be applied limits their general utility. 

Sugihara and May (1990) used a different approach to infer chaos.  They noted that for 

large time series (e.g. > 500 observations) that nonlinear models fit to these data typically did 

well predicting future observations, at least for a dozen or so time intervals, unless the 

trajectories were chaotic.  The sensitivity of chaotic dynamics to initial conditions means that 

predictive power will be lost quickly.  Thus, in plots of the correlation coefficient between 

predicted and observed population size vs. the number of time intervals in the future, 

Sugihara and May suggest that steadily declining correlations over about twelve time intervals 

indicates chaotic dynamics.  Sugihara and May conclude that the number of measles cases in 

New York City and the number of diatoms off the pier in La Jolla are chaotic, while 
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chickenpox cases in New York City are not chaotic.  The practical limitation of these 

techniques is the large samples needed. 

Another very interesting procedure for detecting chaos has been described by Ellner and 

Turchin (1995).  The ultimate goal of this technique is to directly estimate the Lyapunov 

exponent of the non-linear dynamical model.  Chaotic populations will of course possess 

positive Lyapunov exponents.  These techniques appear to work well with modest size data 

sets (~50 observations).  Ellner and Turchin proposed estimating a population dynamic 

model from the observations as described earlier in this chapter.  They relied on three 

general models, the response surface, feedback neural networks and thin plate splines.  Each 

method uses very general nonlinear equations and no arguments from first principles favor 

one method over the others.  However, the response surface method will typically require 

fewer parameters and will be particularly helpful for small data sets.  In simulations Ellner 

and Turchin found no substantial differences in the performance of each of these three 

general models. 

Ellner and Turchin suggest using the V2 statistic to choose the best model.  As we have 

already seen for the Drosophila data analyzed in this chapter other criteria, like PRESS, will 

not necessarily identify the same model as best.  We suggest using a variety of techniques for 

identifying the best model and if no single model “wins” determining the Lyapunov 

exponent from the range of best models.  We think this is a prudent method for several 

reasons.  Obviously, if different objective criteria can not distinguish among several models 

they should all be examined.  PRESS and V2 will help identify models which may provide 

the best future predictions but that doesn’t necessarily mean they will provide the most 

reliable estimates of the stability of the studied populations.  For this reason it is worth while 

to look at several models to insure that results are consistent.  If the results are not 
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consistent between models then the strength of our conclusions about the existence of chaos 

will only be as strong as our belief that the chosen model is the proper one for the study 

population. 

Once a model is chosen then the Lyapunov exponent is estimated in a manner similar to 

the technique used in chapter 2.  We illustrate this with a second order model.  The 

extension to higher order models is straightforward.  Suppose we have m-observations 

labeled 
~

,
~

,...,
~

N N Nm0 1 1 .  The model of population growth is, 

(3.8)   N g N Nt t t  1 2, . 

Let the vector Nt be (Nt, Nt-1)T.  Then equation (3.8) may be rewritten as, 
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We can then define the Jacobian matrix as, 
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The estimated Lyapunov exponent is, 

(3.9)   log   ...  
  

1

1m
J J J vm 1 m 2 1 , 

where vT = (1, 0).  The double bars indicate any vector norm (see box E).  In simulated 

trajectories of 100 observations these techniques were very good at distinguishing chaotic 

from non-chaotic dynamics. However, these simulations were on a limited set of models and 

more work on these techniques if needed. 
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E Vector Norms:  if v is an n-dimensional vector with real or complex elements, a vector norm will 

have the following properties. (i) ||v|| > 0, unless v = 0,  (ii) if c is a scalar then ||cv|| = |c| ||v||,  (iii) 

for any vectors v and u, ||v + u||  ||v|| + ||y||.  Condition (iii) is also known as the triangle 

inequality.  The Euclidean norm (or distance) is defined as, 

 v 2 1

2 2 1 2

     v vn

/

. 

Other commonly used norms include, 

v 1
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n
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i
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It is worth contrasting equation 3.9 to the technique used in figure 2.4 to estimate the 

Lyapunov exponent. In figure 2.4 the deterministic model was iterated many times to 

determine if nearby trajectories tend to diverge from each other. In equation 3.9 this 

behavior is estimated along the actual orbit of the observed population sizes. These 

observations clearly consist of both the deterministic portion of population dynamics and 

the random component. In fact we might view the observed population sizes as a realization 

of the stationary distribution of the population size. For this reason the method developed 

by Ellner and Turchin is in fact a stochastic estimate of stability (see chapter 1). Another 

technique for estimating stochastic Lyapunov exponents has recently been described by 

Dennis et al. (submitted). Their technique iterates a stochastic model of population dynamics 

and is similar to the technique used in figure 2.4. The technique proposed by Dennis et al. 

differs from Turchin and Ellner’s method in three ways. (1) Dennis et al. uses a mechanistic 

based model fit to data whereas Ellner and Turchin use nonparametric models fit to data. 
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Dennis et al. applied their technique to experimental Tribolium data, for which there is a 

good theoretical understanding of the growth model (see chapter five). In contrast Turchin 

and Ellner apply their techniques to many natural populations where this level of 

understanding is seldom found. (2) Dennis et al. iterates a stochastic model and evaluate 

Jacobian products until convergence whereas Turchin and Ellner evaluate the Jacobians 

using the observed data trajectory. This requires Dennis et al. to make some assumption 

about the form of the random noise while Ellner and Turchin are using the observations as 

an empirical estimate of that distribution. The consequences of assuming the wrong 

distribution have not been studied yet. (3) Dennis et al. demonstrates a bootstrapping 

technique to provide confidence intervals for the Lyapunov exponents and stochastic 

Lyapunov exponents. 

Dennis et al. (submitted) prefer to separately estimate the deterministic and stochastic 

parts of a population’s dynamics. Dennis et al. reason that there is inherent interest in 

determining to the extent to which a population’s overall behavior is a consequence of the 

underlying biology that determines the nonlinear growth equations. For instance in the 

experimental Tribolium systems studied by Dennis et al., they estimate that the deterministic 

component of population dynamics explains 93% to 99% of the observed variability 

depending on the life-stage examined. In all likelihood natural populations would have a 

larger contribution from random forces. 

On the other hand Dennis et al. note the potential for stochastic noise to have significant 

impact on the final dynamics of populations. For instance noise may cause populations to 

spend long periods of time near unstable equilibria or in cases where there are multiple 

domains of attraction, noise may cause populations to bounce between these alternative 

states.  
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In many ways the final description of population dynamics involves the consideration of 

elements analogous to those that appear in descriptions of the evolution of populations: 

natural selection and genetic drift. Evolution depends on both the deterministic force of 

natural selection and the random force of genetic drift. We find situations where one or the 

other force is likely to dominate evolution: drift dominates in small populations while 

selection will control the fate novel beneficial traits (like antibiotic resistance in bacterial 

populations) in large populations. Important synthetic theories of evolution emphasize the 

joint role of both forces. Wright’s shifting balance theory of evolution utilizes the potential 

of drift to place populations near different domains of attraction and thus “permit” 

evolution to explore the adaptive landscape. 

We think that just as evolutionary biology finds it useful to keep track of the stochastic 

and deterministic forces separately, the discussion of population dynamics will also benefit 

by separately evaluating the deterministic and stochastic components. There are several 

reasons for adopting this approach. (1) In most experimental systems it is the deterministic 

aspects of population dynamics that have been manipulated, although in the future we may 

find experimental work that attempts to manipulate the random aspects of the environment. 

(2) Evolution of life histories will affect the deterministic aspects of population dynamics. (3) 

Detailed study of environmental variation, at least in natural populations, is likely to be 

relevant only to specific geographic regions and only for specific periods of time. As a result 

their detailed understanding will provide less general knowledge than we can derive through 

an equivalent study of the deterministic aspects of population dynamics.  

We already know from our analysis of the deterministic models that have been fit to the 

Drosophila data (fig. 3.2) that the equilibrium points are stable (table 3.2). We may now use 
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the method of Ellner and Turchin to determine if the stochastic Lyapunov exponent is 

positive.  

Table 3.3. The stochastic Lyapunov exponents for the Drosophila populations 8 and 14 shown in 
figure 3.2. The second order models utilized in Table 3.1 were used with several different values 
of . 
 Population Stochastic Lyapunov Exponent 

-0.5 8 -0.49 

 14 -0.13 

0 8 -0.09 

 14 -4.3 

0.5 8 -0.52 

 14 -0.27 

All stochastic Lyapunov exponents in table 3.3 are negative. Thus, even with environmental 

noise, trajectories that start close by will stay close by each other.  

Some time series data from natural populations are collected at monthly intervals rather 

than yearly. Samples collected this way may reflect seasonal variation in addition to other 

sources of variation. Ellner and Turchin (1995) suggest that forcing the population dynamic 

model to explain this regular source of variation can lead to spurious inferences of chaotic 

dynamics. They suggest adding to the regression models the periodic parameters, 

cos(2t/12) and sin(2t/12). Ellner and Turchin found that monthly records of measles 

were weakly stable with the inclusion of the periodic function but chaotic without it. At this 

time, the relative importance of chaos in the dynamics of natural populations is a topic on 

continuing debate, and we shall return to this issue in our discussion of natural populations 

in chapter 7. 
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APPENDIX 

TABLE 3.1A. Population size variation in the two populations of D. melanogaster graphed in 

figure 3.2. 

Week Population-8 Population-14
1 100 100
2 92 100
3 364 123
4 727 729
5 422 1201
6 1433 891
7 1082 968
8 1093 1553
9 898 1261

10 719 1336
11 833 1391
12 870 1330
13 997 1157
14 631 1004
15 1405 1393
16 906 838
17 961 1114
18 1066 789
19 895 986
20 801 1074
21 923 1302
22 1002 1309
23 963 1170
24 1135 855
25 1186 1065
26 800 794
27 808 1030
28 845 912
29 741 845
30 867 659
31 504 861
32 820 553
33 428 853
34 862 966
35 974 754
36 1058 902
37 841 1062
38 762 1108
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TABLE 3.2A.  The observed survivors (g1(N*)) and emerging progeny (g2(N*), g3(N*), 

g4(N*)) from the single density experiments for populations-8 and -14 of D. melanogaster. 

Population Density (N*) Replicate g1(N*) g2(N*) g3(N*) g4(N*) 

Line 8 750 1 361 230 274 173 

  2 392 207 311 104 

  3 321 334 326 81 

  4 322 366 290 84 

  5 103 266 229 73 

  6 89 309 227 47 

 1000 1 191 436 298 63 

  2 108 315 238 62 

  3 138 304 201 94 

Line 14 750 1 45 353 314 289 

  2 39 333 298 269 

  3 295 258 373 147 

  4 304 222 349 142 

  5 109 287 460 378 

  6 91 286 404 355 

 1000 1 308 197 447 260 

  2 139 160 322 408 

  3 167 206 332 367 
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CHAPTER FOUR 

Blowflies 

In the 1950s, the Australian entomologist A.J. Nicholson did a series of experiments 

aimed at studying the dynamics of laboratory populations of the Australian sheep blowfly 

Lucilia cuprina Wied. under various types of food regimes and demographic and 

environmental perturbations (Nicholson, 1954a, b, 1957). These experiments were 

conducted during the heyday of the debate, to which we alluded in Chapter 1, about the 

importance of density-dependent versus density-independent mechanisms in population 

regulation. Consequently, some of Nicholson’s concerns in his attempts to demonstrate 

experimentally that populations were self-regulating and could compensate for various 

perturbations to their numbers today seem a little anachronistic. Ironically, the regular cycles 

in population numbers that Nicholson observed, and which have been a continuing focus of 

attention and interest among population ecologists, were to him “only of secondary 

importance”. Nevertheless, the data collected by Nicholson in the course of his experiments 

have become well known as a text-book example of how populations can fluctuate violently 

in numbers even in constant environments, and have motivated several modeling efforts in 

more recent times (May, 1973; Brillinger et al., 1980; Gurney et al., 1980; Nisbet and Gurney, 

1982; Stokes et al., 1998; Manly, 1990; Gutierrez, 1996). In this chapter, we will review some 

of Nicholson’s experiments, concentrating on those results that shed some light on how 

various density-dependent regulatory mechanisms can affect the stability of populations. 

LIFE-HISTORY OF L. CUPRINA IN THE LABORATORY 

In his experiments, Nicholson reared large populations of blowflies at 25oC in perspex 

cages that could support adult populations of over 10,000 flies. Under these conditions, eggs 

hatched in 12-24 hours, and the larval stage extended from 5-10 days, with the duration 
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partly depending on larval density. The pupal stage took between 6-8 day. Young adults of 

L. cuprina are not sexually mature untill about 4 days of adult age, and females may be ~ 8 

days old before they are able to lay any appreciable numbers of eggs. The adults could live 

up to 35 days or so. Thus, the total development time, from egg to egg, in these populations 

was about 20-22 days. 

In these experiments, the laboratory populations of L. cuprina were subjected to two 

major types of food regimes. In one food regime (henceforth referred to as HL: high food 

levels for larvae, low food level for adults), larvae were given food well in excess of their 

requirements, and adults did not have access to this food. The adults, on the other hand, 

were supplied sugar and water to excess, but had their protein supply limited by adding only 

0.5 g of ground liver each day to the culture. In L. cuprina, adult mortality levels and age-

dependent patterns are similar whether they are given sugar, water, and liver, or just sugar 

and water. Life-span, however, can be considerably shortened by reducing the amount of 

sugar supplied to adults. The requirement of adequate supplies of protein for adults is 

important for female fecundity. If the protein intake of females is below a threshold level, 

they lay no eggs and, in general, fecundity declines with decreasing protein intake. In the 

other main food regime used (henceforth referred to as LH: low food levels for larvae, high 

food level for adults), adults were given sugar, water, and liver well in excess of their 

requirements, and larvae did not have access to this food. The larvae in this food regime 

were provided only 50 g of food per day (25 g per day in some treatments), which would 

give rise to severe scramble type larval competition for food. 
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FIGURE 4.1. Larval density-dependent larval mortality in L. cuprina. Data points are means from 
several independent replicate vials at each density. Survival untill eclosion is also partly 
determined by pupal mortality, which is ~ 0.02, and independent of larval density (data from 
Nicholson, 1954 b). 

It is clear that major density-dependent effects in these populations were mediated 

through food availability for larvae or adults, according to food regime. Both larval and adult 

life-stages in L. cuprina were subject to density-dependent mortality. In larvae, there was 

negligible mortality when excess food was provided; the density-dependence of mortality 

was, thus, primarily due to density in terms of larvae per unit food. At densities of 5-10 

larvae per g food, 80-90% of the larvae survived to eclose as adults. Survivorship untill 

eclosion declined rapidly as larval density increased from 10-40 larvae per g, and was less 

than 2% for densities greater than ~ 100 larvae per g (fig. 4.1). Survival of larvae untill 

eclosion, of course, depends upon both larval and pupal mortality, but pupal mortality in L. 

cuprina was not dependent upon larval density, and in Nicholson’s experiments it fluctuated 
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erratically about a mean level of ~8%. Larval density also had an effect upon the size of 

eclosing adults, with substantial reduction in adult size being observed even at larval densities 

at which survivorship was not affected so markedly. Adult mortality in these populations 

appeared to increase almost linearly with density, at least over the range of densities observed 

in the course of Nicholson’s experiments (fig. 4.2). The mortality values in figure 4.2 are for 

the fraction of adults dying over a two day period, and it can be seen that at densities above 

6000 adults or so, the adult numbers within a cohort would fall quite drastically in just a few 

days, lowering the mean life-span substantially. 
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FIGURE 4.2. Adult density-dependent adult mortality in L. cuprina. Data points are means 
averaged over 10-20 separate observations of the number of deaths during two day periods as a 
fraction of the number of adults present at the beginning of those two days. The figure is 
schematic, and depicts the average mortality over a density range. For example, mortality over 
two-days at densities of ~1500-2500 adults would be ~30% (modified after figure 8.2 in Manly, 
1990). 
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Female fecundity in these populations was also adversely affected by increased adult 

density, and this effect was heightened in the HL food regime, where the supply of protein 

to adults was limited (fig. 4.3). The pattern of sensitivity of fecundity to adult density in the 

LH and HL food regimes depicted in figure 4.3 is for illustrative purposes only, and should 

be interpreted qualitatively. The data to which the hyperbolic model of fecundity as a 

function of density have been fitted are average daily fecundity and average adult population 

size data from a number of treatments within both LH and HL regimes, in which varying 

proportions of adults were culled by the experimenters. Thus, large fluctuations in adult 

numbers, and in fecundity, have been subsumed into the mean values. Our main purpose 

here, is simply to illustrate that, broadly speaking, fecundity declined with adult density in 

both food regimes, but the sensitivity of this density-dependent response was markedly 

reduced in the LH food regime. Female fecundity would also have been adversely affected 

by high larval densities, due to reduction in adult size which was up to eightfold in these 

experiments when larval densities were high. The effect of larval density on female fecundity 

in the LH regime, however, was of far smaller magnitude than the effect due to adult density 

in the HL food regime (Nicholson, 1957). 
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FIGURE 4.3. Idealized depiction of the sensitivity of female fecundity to adult density under the 
LH (unlimited protein for adults) and HL (adult protein supply limited to 0.5 g liver per day) food 
regimes. The figure shows best fit curves obtained by fitting a hyperbolic model of fecundity as a 
function of density (F(Nt) = a/(1 + bNt)) to data on mean numbers of eggs produced daily in 
populations maintaining different mean densities (data from Nicholson, 1954 a). 

Overall, it seems reasonable to conclude that adult-density-dependent fecundity and 

larval density-dependent larval mortality are the main density-dependent regulatory 

mechanisms in the HL and LH food regimes, respectively (fig. 4.4). In the LH food regime, 

moreover, inhibitory effects of both larval and adult density on female fecundity also 

probably play a subsidiary role in generating some amount of negative feedback. Adult 

density-dependent adult mortality is likely to be a minor contributor to density-dependent 

regulation of population growth in both food regimes. 

DYNAMICS OF L. CUPRINA POPULATIONS 

In the experiments conducted by Nicholson, populations of L. cuprina were set up in 

cages, typically established by seeding a cage with 1000 pupae, and then essentially allowed to 
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maintain themselves for up to a year or more, with minimal disturbance other than the 

imposition of an LH or HL food regime. Data recording began a few weeks after initiating a 

population, in order to avoid any transient dynamics. Daily records were kept of the number 

of larvae, pupae, and living and dead adults. Some of the populations within each food 

regime were also subjected to demographic perturbation by killing a fixed proportion of 

eclosing adults each day, or to variations on the food regimes, which we will discuss later. 
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FIGURE 4.4. Schematic depiction of the density-dependent regulatory mechanisms acting on 
populations subjected to LH and HL food regimes. Thick gray arrows represent ontogenetic 
transformations. Solid and dotted thin black arrows represent relatively strong and relatively weak 
density-dependent feedback loops, respectively. 

From the point of view of our interest in stability, the most important result from these 

experiments was that fairly regular, large amplitude (3-4 orders of magnitude) oscillations in 

adult numbers, with a periodicity of ~ 40 days, were seen in both HL and LH food regimes, 
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although the period appeared to be somewhat shorter in the LH food regimes (fig. 4.5). In 

the HL food regime, minima in adult numbers were as low as a few tens of adults, whereas 

adult numbers at the maxima routinely exceeded 7000, going as high as 14000 in some 

cycles. The magnitude of the maxima in numbers was clearly affected by the amount of food 

provided to the larvae. In an LH food regime where larvae were limited to 50 g food per day, 

observed maxima were in the range of 2000-3500 adults, whereas when larval food supply 

was held at 25 g per day, the range of observed maxima was only 700-1500 adults. Although 

the amplitude of the fluctuations was much reduced in the LH treatments where larval food 

supply was limiting, the degree of instability of populations in the two food regimes was not 

different, with coefficients of variation of adult numbers being ~1.0 in all three populations 

shown in figure 4.5. 
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FIGURE 4.5. Representative samples of a few cycles of time series data from three populations, 
illustrating the regular fluctuations observed both LH and HL food regimes. Data from the initial 
few weeks of each population would represent transient dynamics and have, therefore, been 
omitted. Panel A data are from a population subjected to an HL food regime. Panels B and C 
show data from populations in LH food regimes with larval food supply held at 50 g and 25 g per 
day, respectively. Note the different scaling of the Y-axis in each panel. Horizontal gray bars 
represent times that appreciable numbers of eggs were laid (in Panel A), or egg laying periods for 
which the eggs laid actually gave rise to an appreciable number of eclosing adults (in Panels B, 
C) (modified after Nicholson, 1954 b, 1957). 
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In both LH and HL food regimes, appreciable recruitment into the adult stage only 

resulted from eggs laid during troughs in adult numbers (fig. 4.5). In the HL food regime, 

where protein supply to adults was limited, appreciable numbers of eggs were laid only when 

adult numbers were very low, enabling at least some females to obtain enough protein for 

sustaining egg laying. Larval mortality in this food regime was negligible, and pupal mortality 

was not density-dependent. Consequently, the numbers of breeding adults recruited on any 

day would be directly proportional to the number of eggs laid about 20 days before. In the 

LH food regimes, adults were not limited by protein supply and, consequently, relatively free 

from adult-density-dependent control on fecundity (fig. 4.3). As a result, large numbers of 

eggs were laid each day, especially during periods of high adult density. However, at the 

kinds of egg densities reached in the LH cultures (~ 175 larvae per g, on average), larval 

mortality would be very excessive (~0.99: see fig. 4.1), except when relatively few adults were 

laying eggs. Thus, even in the LH food regime, in which adults were not competing for 

protein sources, significant recruitment into the pool of breeding adults would only occur 

from a cohort of eggs laid when adult density was extremely low. In addition to the large and 

regular fluctuations in adult numbers seen in these populations, there is also the somewhat 

intriguing observation that the distribution of eggs laid during the period of low density, and 

which result in significant adult recruitment, is bimodal in the LH food regime (broken grey 

bars in panels B, C of fig. 4.5), whereas it is unimodal in the HL food regime (solid grey bars 

in panel A of fig. 4.5). In fact, two distinct peaks in pupal numbers can be seen per cycle in 

the LH food regime, but they appear at somewhat irregular intervals (data not shown). This 

is a point that Nicholson did not address, although it has been examined by later workers, 

and we will deal with it in the next section, after first discussing here the likely causes of the 

gross features of the observed dynamics in the HL and LH food regimes. 
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As noted by Nicholson, it appears that the fluctuations in adult numbers in these 

populations were caused by a combination of relatively high potential fecundity, extremely 

strong adult density-dependent recruitment into the pool of breeding adults, albeit by 

different mechanisms in LH and HL food regimes, and a time delay of ~ 20 days before the 

impact of adult density at any given time would be felt on recruitment into the pool of 

breeding adults. The destabilizing effect of this time delay would be further exacerbated by 

the relatively high daily adult mortality rate (fig. 4.2), resulting in a fairly rapid turnover of the 

cohorts making up the adult population. Thus, in the HL food regime, large numbers of eggs 

would be laid when adult numbers were very low because relatively more females would be 

able to get enough protein for egg laying. As a result of negligible pre-adult competition, 

these large numbers of eggs would eventually become large numbers of adults after ~ 20 

days. At that point, even though egg production would drop drastically due to increased 

competition among females for scarce protein supplies, recruitment into the adult life-stage 

would continue for several days before the effect of the adult density-dependent reduction in 

fecundity eventually translated into a sharp drop in adult numbers. Every 20 days or so, on 

average, one would expect adult numbers to alternate between very high and very low levels, 

giving rise to a population cycle of ~ 40 days periodicity. An essentially similar mechanism 

was also at work in the LH food regime. A very large number of eggs would be laid when 

adult numbers were reasonably high because L. cuprina females are quite fecund, and there 

was no limitation on adult access to protein. The large numbers of newly hatched larvae 

would then undergo severe competition for limited food, with the result that all or most 

larvae would not be able to attain the critical minimum size for successful pupation. 

Consequently, there would be little or no recruitment into the adult life-stage. Adult 

numbers, at the same time would be declining due to mortality, and soon the adult density 
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would fall to a point where the number of eggs laid would be low enough to significantly 

lessen the severity of larval competition. At this point, recruitment into the adult life-stage 

would begin to increase, and adult numbers would again build up to a point where severe 

larval competition due to an excess of eggs being laid would cause recruitment into the adult 

stage to decline, thus giving rise to cycles in adult numbers similar to those seen in the HL 

populations. 

It is clear from the explanation of how LH and HL food regimes give rise to cycles in 

adult numbers, that an LL regime in which both larvae and adults are given limited food 

supply would tend to exhibit relatively stable dynamics of adult numbers. In an LL regime, 

very high adult numbers would still lead to a crash in adult numbers after ~ 20 days, largely 

due to the density-dependence of female fecundity. However, if adult numbers were very 

low, large numbers of eggs would be laid but would not cause as large a pulse in recruitment 

into the adult stage as would be seen in the HL food regime due to density-dependent larval 

mortality in the LL food regime. Similarly, moderate numbers of adults laying eggs in an LL 

food regime would not elicit levels of larval competition as severe as they would in an LH 

food regime because of density-dependent fecundity in the LL regime. Overall, thus, an LL 

food regime would be predicted to result in adult dynamics that were relatively stable, in 

terms of decreased amplitude of oscillations in adult numbers. Such an effect was, in fact 

seen, in an experiment in which populations were first maintained on an LH food regime, in 

which larval food supply was held at 50 g per day, for about a year and a half. These 

populations showed the ~ 40 day cycles typical of the LH food regime, with maxima of  

about 2000-4000 adults. After a year and a half, the populations were switched to an LL 

food regime by also restricting the supply of liver to the adults to 1 g per day. This switch in 

food regime led to a noticeable alteration in the dynamics of adult numbers. The mean 
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number of adults increased three to four fold, and although numbers continued to fluctuate 

quite a bit, the fluctuations were no longer regular and their amplitude was much reduced 

(fig. 4.6). Moreover, eggs laid at all adult densities, even fairly high ones, did result in 

appreciable recruitment into the adult stage under the LL food regime (fig. 4.6). 
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FIGURE 4.6. Time series data for 330 days from an experiment in which a population kept on an 
LH food regime with 50 g food per day for larvae and excess food for adults, was switched to an 
LL food regime where adults were given only 1 g liver per day. The transition between food 
regimes is indicated by the vertical dashed line. Horizontal gray bars represent egg laying periods 
for which the eggs laid actually gave rise to an appreciable number of eclosing adults. Data for 
the whole experiment have not been shown: the population was maintained for a year after 
switching  food regimes and the dynamics throughout that period were qualitatively similar to 
what is depicted here for the first 170 days after the switch (modified after Nicholson, 1957). 

As we mentioned earlier, Nicholson also subjected populations maintained on LH or HL 

food regimes to various regular demographic and environmental perturbations, especially as 

his major interest was in probing the mechanisms whereby populations could compensate 

for the effects of such perturbations on the numbers of different life-stages. One series of 
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experiments involved culling different fixed proportions of the adult population (between 

50% to 99%, depending on treatment) every two days in populations subjected to LH or HL 

food regimes. The major observation from populations subjected to HL food regimes was 

that the removal of adults essentially reduced competition among females for the limiting 

protein supply thus, the birth rate per individual went up. Since there was excess food for 

larvae in these food regimes, pupal production and adult eclosion per day also increased. To 

a large degree, therefore, the removal of adults from the cultures resulted in increased 

recruitment into the adult life-stage, partly compensating for the perturbation. For example, 

the mean number of adults in cultures kept on an HL food regime without adult removal 

was 2520, whereas in cultures where 50% of adults present were removed every two days, 

the mean number was 2335; even cultures where 90% of the adults were removed every two 

days had a mean adult population as high as 878 (Nicholson, 1954 a). In cultures maintained 

on the LH food regime, increased removal of adults reduced the numbers of eggs laid per 

day, thereby alleviating larval competition for the limited supply of larval food. The 

reduction in larval competition decreased the mean larval mortality, from ~98% in cultures 

where no adults were removed to ~77% in cultures where 95% of the adults were removed 

every two days, resulting in increased recruitment into the adult population. 

Perhaps more pertinent to our focus on population dynamics and stability are results 

from experiments involving regular fluctuations in the amount of food provided to adults in 

populations subjected to HL food regimes. In these experiments, Nicholson (1957) set up 10 

populations in which there was unlimited supply of larval food and water and sugar for the 

adults. Two of these populations served at controls, with a constant supply of liver to the 

adults fixed at either 0.1 g or 0.4 g per day. In the other eight populations, the adult supply 

of liver per day was varied systematically from 0.05 g per day, up through 0.5 g per day, and 
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back again. The populations subjected to this fluctuating supply of liver for the adult life-

stage differed from one another in the periodicity (10, 20, ...., 70, 80 days) of the imposed 

cycles in food supply. These populations were maintained for about two years, and 

demographic records were maintained as described earlier for the LH and HL regimes. 

In all but one of the populations subjected to a fluctuating adult food supply, the 

dynamics of adult numbers underwent changes in periodicity as time progressed. In the 

population with adult food supply cycling every 20 days, adult numbers during the first 400-

500 days fluctuated with the expected periodicity of ~ 40 days, such that one cycle of adult 

numbers encompassed two cycles of food supply. Thereafter, however, there was a sudden 

and dramatic change in the periodicity of the fluctuations in adult numbers, which began to 

cycle with a periodicity of ~ 20 days. At the other extreme, adult numbers in the population 

with food supply cycling every 80 days, fluctuated with the expected periodicity of ~ 40 days 

for the first 300 days or so, showing two peaks of adult numbers per food supply cycle. 

After about 300 days had elapsed, however, the cycles in adult numbers appeared to break 

up such that there was only one major peak in adult numbers, with several much smaller 

peaks, during a single cycle of food supply. Similar effects were seen in other populations 

with fluctuating adult food supply; typically the periodicity of the cycles in adult numbers 

was altered such that it became the same as that of the food supply cycle, or a multiple of it. 

Nicholson interpreted these results as supporting his view that when a population underwent 

oscillations in density due to intrinsic factors, environmental cycles would be “impressed 

upon the population”. Why exactly he expected this to happen is not entirely clear, but it is 

likely that he had some kind of analogy with oscillator entrainment mechanisms in mind.  

Interestingly, the dynamics of adult numbers in the control populations in this 

experiment also underwent a marked change around 400 days after the cultures were 
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initiated (fig. 4.7). During the first 400 days or so, the control populations exhibited typical 

large amplitude cycles in adult numbers with a periodicity of ~40 days, as expected in an HL 

food regime. Thereafter the fluctuations became very irregular and the minima in population 

sizes, in particular, became much higher than expected in an HL regime. The extremely 

episodic pattern of egg production typical of the HL food regime, with eggs being laid only 

during trough in adult numbers, also broke down after about 400 days. Although then 

number of eggs laid tended to fluctuate in inverse relationship to adult numbers, at least a 

few hundred eggs were being produced more or less all the time.  
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FIGURE 4.7. Time series data from one of the populations that showed an apparent change in 
dynamics after about 400 days of rearing on a HL food regime. Horizontal grey bars represent 
times that appreciable numbers of eggs (at least a few hundred) were laid. (data from Nicholson, 
1957). 

Nicholson (1957) interpreted this as an indication that evolutionary changes had taken 

place in these populations over the course of his experiment, and that these changes affected 

key life-history traits that had an impact upon the dynamics of adult numbers in these 

populations. To test this hypothesis, Nicholson compared the fecundity, at different levels of 
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protein supply, of females from one of the control populations, as well as from some the 

fluctuating food supply populations, with that of flies from the ancestral laboratory 

population, as well as wild caught flies. He found that flies from the control population and 

three of the populations used in the fluctuating food supply experiment had a far lower 

minimum protein requirement for egg laying, compared to either the ancestral population, or 

to wild flies. In fact, the flies from the experimental populations could actually lay reasonable 

numbers of eggs, sufficient to sustain a culture, even when provided with no protein. 

Nicholson, therefore, concluded that the extreme competition for protein among adults, at 

least for part of each food supply cycle, had resulted in natural selection favoring the ability 

of females to lay eggs despite minimal protein intake. 

MODELING THE DYNAMICS OF L. CUPRINA POPULATIONS 

Given the length of the time series of adult numbers generated by Nicholson’s 

experiments, and the wealth of demographic information he collected, it is not surprising 

that these data have been the basis for several modeling efforts, even decades after the 

experiments were conducted. May (1973) first showed that the time-delayed logistic model, 

dN

dt
rN

N

K
t t D 





1 , the simplest continuous time population model that can generate 

cyclic behavior, gave reasonable fits to the observed data, with  time delay, D, of about 9 

days. This exemplifies the inherent problem in post-hoc model fitting, because, despite the 

observed reasonable fit, the time delay of 9 days is clearly much smaller than the minimum 

ontogenetic time delay from egg to egg (~ 15 days) in these populations. Similarly, another 

simplistic model, relating adult mortality rates to the adult density at two previous censuses, 

and modeling recruitment into the adult stage as a function of adult densities at three 

previous censuses, also provides reasonably good fits to the observed data (Manly, 1990). At 
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the other end of the spectrum of model complexity, a stage-, age-, and size-structured model 

incorporating mass dynamics also provides good fits to observed dynamics of different life-

stages (Gutierrez, 1996). These kinds of modelling effort, however, do not really add much 

to our understanding of the biological basis of the observed dynamics, especially because 

there have been no empirical studies on blowflies, subsequent to Nicholson’s work, that 

would possibly enable us to differentiate between different models. Modelling alone, without 

repeated testing of the models using experimental populations, rarely provides great insights 

into factors governing the dynamics of a given population. It is the repeated mutual feedback 

of theory and experiment that really yields great dividends in population ecology research, as 

we shall see in subsequent chapters on Tribolium and Drosophila.  

An interesting point about blowfly dynamics was made by Brillinger et al (1980), using a 

fairly simple model incorporating both age- and density-dependence of adult mortality. 

Simulations of their model give rise to chaotic dynamics in which there is a periodic structure 

for large durations of time, which sometimes breaks down into episodes of apparently 

random dynamics. This is interesting because of the similarity to what was seen in the 

control populations of the fluctuating food supply experiment (fig. 4.7). In fact, Nicholson 

often saw the periodic cycles in adult numbers break down in the course of various 

experiments and typically terminated the cultures because he suspected genetic changes in 

the population were responsible. Empirically speaking, it therefore remains an open question 

as to whether these episodes were in fact a breaking down of the apparently periodic 

structure in the chaotic dynamics, as predicted by Brillinger et al (1980). However, this issue 

has also been addressed theoretically, as described below. 

A delay differential equation model, slightly more elaborate than that of May (1973) was 

used by Gurney et al (1980) and Nisbet and Gurney (1982) in an attempt to investigate some 
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of the possible mechanisms underlying both gross and fine level dynamic behaviors seen in 

the L. cuprina populations. Assuming that egg production depends only on current adult 

density, survivorship from egg to adult depends only on the number of competitors of the 

same age, and maturation from egg till adulthood takes exactly D time units, they modeled 

the adult recruitment rate, R, as R = R(Nt-D). Further assuming that per-capita adult 

mortality, , is independent of density and age, the rate of change of adult numbers can be 

written as 
dN

dt
R N Nt D t ( )  . Finally, recall that in both LH and HL food regimes, 

recruitment into the adult life-stage is essentially zero D time units after a point of high adult 

density, whereas it is somewhat higher following points of low adult density. Moreover, the 

recruitment must be zero following a point of zero adult density, and the function has a 

single maximum. Thus, the dependence of the recruitment function upon adult density can 

be modeled as R(N) = PNexp(-N/N0), where N0 is the adult density corresponding to the 

maximum of the recruitment function. The complete model can, thus, be written as 

(4.1)  
dN

dt
PN N N Nt D

t D t D t


   exp { / }0  . 

The analysis of this model has been described exhaustively by Nisbet and Gurney (1982), 

and we shall, consequently, restrict ourselves here to the major results emanating from the 

analysis. Basically, the model has a single non-trivial equilibrium at N* = N0 ln(P/), and the 

local stability of this equilibrium, and the qualitative aspects of the fluctuations about it, are 

completely determined by the quantities PD and D. The observed value of P, the maximal 

per capita fecundity, as estimated from Nicholson’s data, lies between 7.4 and 11.4 eggs per 

day. This is consistent with P values required to place the populations in the region of PD-

D parameter space characterized by stable limit cycle behavior. The other type of dynamic 
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behaviour that would also have been consistent with observed time series data is quasi-cyclic 

fluctuations, with episodes of relatively regular cycles of period similar to the ontogenetic 

time delay, D, interspersed with bursts of noise. This kind of behaviour can be produced as a 

result of demographic stochasticity in a system that, from the point of view of a 

deterministic model, lies in the stable and underdamped region of parameter space (Gurney 

et al., 1980). Clearly, for this possibility to hold in the case of Nicholson’s data, the estimated 

point equilibrium would need to be stable and underdamped, as opposed to unstable. In 

order for the point equilibrium to fall in that region of the relevant parameter space, 

however, P would need to be an order of magnitude greater than the observed values. It 

seems reasonably clear, therefore, that the underlying dynamics of the L. cuprina populations 

in the LH and HL food regimes is that of a stable limit cycle about an unstable point 

equilibrium. Further support for this conclusion comes from simulations of the model (eq. 

4.1) under both the quasi-cyclic and limit cycle hypotheses, with stochastic variation in birth 

and death rates added to the deterministic delay differential equation (Renshaw, 1991). The 

results of these simulations also clearly show that the hypothesis of quasi-cyclic behavior due 

to a stable underdamped equilibrium cannot give rise to dynamics that resemble the 

observed data, whereas simulations under the stable limit cycle hypothesis capture at least 

the major qualitative features of the observed dynamics. 

Interestingly, deterministic simulations of this model (eq. 4.1) with parameter values 

drawn from Nicholson’s data for populations on an LH food regime, are also able to recover 

the splitting up of recruitment into the adult stage into two discrete bursts in each population 

cycle that was described earlier (see fig. 4.5). This is due to the complexity of dynamic 

behavior that a population in the limit cycle region of parameter space can exhibit, especially 

if it is relatively far from the local stability boundary (Gurney et al, 1980). In this model (eq. 
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4.1), the pattern of how recruitment into the adult stage is distributed within each population 

cycle depends upon how low the adult numbers fall during each trough. When the minimum 

adult number, Nm, is greater than N0, then recruitment into the adult stage shows one peak 

per population cycle. When Nm < N0, on the other hand, the single peak begins to show 

signs of splitting, and finally, when Nm << N0, as is the case in the LH food regime, the 

behavior of recruitment itself becomes cyclic, with two or more peaks of varying degrees of 

irregularity per population cycle, especially if the cycles in adult numbers are not simple 

(Gurney et al, 1980). 

An extension of the same model (eq. 4.1), incorporating the protein dependence of 

fecundity, has been used to explain the results from the fluctuating food supply experiment 

described in the previous section (Stokes et al, 1988). The parameters d, P, N0 and D were 

determined from the data on the control population where adults were given a fixed supply 

of 0.4 g liver per day. The time series was divided into seven consecutive 100 day periods, 

and parameter estimation was done separately for each such period. The results suggested 

that over the course of the experiment, the population moved across the PD-D parameter 

space, from the unstable to the stable region, largely as a consequence of reductions in both 

maximal fecundity, P, and the per capita protein intake at N0. This latter quantity represents 

the critical minimum protein requirement for egg laying. Simulations incorporating these 

time-dependent changes in parameter values were then carried out for conditions mimicking 

the control population with 0.4 g protein per day, as well as the population in which adult 

protein supply fluctuated with a periodicity of 20 days. These simulations were able to 

capture the changes in dynamics that had been observed in the data after a few hundred 

generations of maintenance. In the case of the 20 day food supply cycle, during the period 

when the population was in the unstable region of parameter space yielding stable limit 
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cycles of ~ 38 day periodicity, the effect of the external food supply cycle was merely to drag 

the period of the intrinsically driven population cycle upto the nearest sub-harmonic of the 

food supply cycle (40 days). Once the population had moved into the stable region of 

parameter space, its intrinsic limit cycle was no longer a constraint, and it began to track the 

20 day food supply cycle. The lack of classically stable dynamics in the control population 

during the last few hundred days of the experiment can be ascribed to noise. 

Overall, the results from the delay differential model (eq. 4.1) appears to adequately 

capture various aspects, at both fine and gross levels, of the observed dynamics of L. cuprina 

populations under a variety of environmental conditions. The fact that such a simple model 

is able to explain many of the finer aspects of the dynamics of these populations reinforces 

the view that the driving force of the dynamics of adult numbers in these laboratory 

populations was the combination of high base-line fecundity and very strong time delayed 

adult density-dependent recruitment into the adult life-stage, with other density-dependent 

regulatory factors playing at best a minor role. 
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CHAPTER FIVE 

Tribolium 

Flour beetles of the genus Tribolium have been used for research in population biology 

since the early decades of this century and, along with fruit flies of the genus Drosophila, are 

among the best understood model systems for studying single-species population dynamics. 

Of the 26 or so species of Tribolium, T. confusum and T. castaneum have been most widely used 

in population ecology (King and Dawson, 1972), and most of our discussion will, 

consequently, be limited to these two species. Both species are morphologically and 

ecologically similar, and are easily cultured in the laboratory in coarse-ground flour, 

supplemented with yeast. Chapman (1918) began the early studies on the biology of Tribolium 

cultures due to its economic importance as a cereal pest, and was soon arguing for its use as 

a model system to study population ecology. In the 1920s, Chapman was influenced by the 

theoretical models of population ecology developed independently by Lotka and Volterra, 

and had also spent some time with Fisher, studying experimental design. All these influences 

coalesced into an approach in which he used careful studies on laboratory cultures of 

Tribolium as a means to empirically estimate major parameters of the mathematical models, 

especially those that reflected density-dependent regulatory mechanisms (Chapman, 1928). 

He also demonstrated major fluctuations in population size if cultures were established only 

with adults, and argued that cannibalism of immature stages by adults was the major 

determinant of population size in Tribolium (Chapman and Whang, 1934). Chapman’s work 

sparked off a series of long term studies of the population ecology of Tribolium cultures 

(reviewed in King and Dawson, 1972) which investigated not only the biological aspects of 

population regulation in single species cultures, with which we shall primarily concern 

ourselves in this chapter, but also included some of the earliest studies on the influence of 
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genetic and environmental variation on the outcomes of inter-specific competition (Park and 

Lloyd, 1955; Lerner and Ho, 1961), as well as studies of dispersal and other behaviors 

relevant to life-history evolution and population dynamics (Naylor, 1959, 1965; Dawson, 

1964; Park et al., 1968).  

Indeed, laboratory cultures of Tribolium continue to be used extensively for studies in 

population ecology and evolutionary genetics (e.g. Goodnight, 1990b; Wade, 1990; Dennis et 

al., 1995; Pray, 1997; Benoît et al., 1998). In this chapter, we will briefly review the basic 

biology of Tribolium cultures and show how this knowledge has been used to develop 

detailed models of population dynamics which are in close agreement with observed data on 

population size in laboratory cultures of Tribolium. Our purpose here is not to cover the 

biology and laboratory ecology of Tribolium spp. exhaustively: very detailed and 

comprehensive reviews can be found in books by Sokoloff (1972, 1974, 1977) and by 

Costantino and Desharnais (1991). We will try to focus more on highlighting the main 

factors that have now been identified as the major determinants of population dynamics in 

Tribolium so as to be able to meaningfully compare and contrast results from different model 

systems in the final chapter of this book. 

LIFE-HISTORY OF TRIBOLIUM IN THE LABORATORY 

Most studies on Tribolium cultures have used a protocol ensuring overlapping 

generations, with a census of the number of individuals in various life stages at regular, often 

monthly intervals and a shift of the entire population to fresh medium at each census. In the 

laboratory, the life-cycles of both T. castaneum and T. confusum are very similar. Eggs hatch in 

4-5 days at 34oC and in 5-6 days at 29oC, the two most commonly used rearing temperatures, 

with T. castaneum eggs hatching somewhat earlier than those of T. confusum. Typically, cultures 

are raised on some kind of course flour (often with yeast or oil added) in bottles, vials, or 
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other suitable containers kept under constant darkness in incubators with humidities ranging 

from 20% to 70% in various studies. The eggs have a sticky external surface and, therefore, 

get coated with the medium. The duration of the larval stage is about 15-20 days in these two 

species, and the number of larval instars varies from 6-11, but is usually about 8. The pupal 

duration is about 5-7 days, and females can be fertilized after 3 hours (T. castaneum) or 17-20 

hours (T. confusum) post eclosion. Adult females can begin egg laying at about 100 hours (T. 

castaneum) or 120 hours (T. confusum) after eclosion, and adults can live for up to 200 days. 

The different life stages can be separated for censusing by simply sieving the medium 

through a series of sieves with appropriate pore sizes. Variation in the duration of different 

life stages, as well as in the number of larval instars, is known to be affected both by 

genotype and environment, especially temperature, food and humidity (King and Dawson, 

1972). 

Pre-Adult Stages 

Compared to Drosophila cultures, where the larvae are the predominant consumers of 

food resources, the impact of larval density on the dynamics of a typical Tribolium culture is 

not quite so important. In fact, at the kinds of larval density attained in typical cultures, larval 

density effects upon larval mortality are rather small (fig. 5.1). In typical Tribolium cultures, 

adults coexist with larvae and, consequently, the primary density-dependent effects on 

population dynamics are often due to adult rather than larval density. Thus, we must take 

into account the effects of both larval and adult density on the biology of each life stage. 

Another unique feature of Tribolium population dynamics is the very important role of 

cannibalism in determining population size; both adults and larvae of Tribolium eat eggs, 

smaller larvae, pupae and callows (very young adults with soft exoskeletons), and at least in 

larvae, the cannibalism rate increases with age (figs. 5.2, 5.3, 5.4). Indeed the major effect of 
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larval density upon itself is indirect, through larval cannibalism of eggs. Similarly, the major 

effect of adult density on larval density is also through cannibalism of eggs by adults. 
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FIGURE 5.1. Larval mortality as a function of larval density per unit food medium (number of 
larvae per vial in 220 mg of food) (data from Howe, 1963). The shaded area represents the range 
of larval densities (in terms of larvae per unit food medium) typically seen in laboratory cultures of 
T. castaneum. It is clear that for the range of densities seen in typical Tribolium cultures, larval 
density-dependent larval mortality will be a negligible factor in determining population dynamics.   

Development time from egg to eclosion in Tribolium is affected by temperature and 

humidity. Egg and pupal durations decrease with increasing temperature and are relatively 

unaffected by humidity, whereas larval duration is affected by both factors. In general, 

development of T. castaneum is faster than that of T. confusum, and the difference is magnified 

at higher temperatures. Egg to adult survivorship of T. castaneum is also greater than T. 

confusum at higher temperature, and these temperature effects correlate with the distribution 
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of these two species in the wild (Howe, 1956, 1960). Development time in Tribolium is also 

adversely affected by increasing adult density, although this is entirely due to a lengthened 

larval developmental period (Park et al., 1939). A similar effect is seen by manipulating larval 

density: increased larval density in unrenewed medium results in slower larval development 

and higher larval and pupal mortality. However, if the medium is renewed at two-day 

intervals, these density-dependent effects are not seen, suggesting that the direct effects of 

larval crowding per se are relatively less important than the effects of density on the extent of 

environmental conditioning. The early work on the effects of larval density on the biology of 

Tribolium has been extensively reviewed by Park (1941). 
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FIGURE 5.2. Age-dependent egg cannibalism by larvae of Tribolium spp (data from Park et al., 
1965). Data depicted are mean (s.e.) fraction of eggs cannibalized, averaged over 4 strains of 
each species, in an experiment in which 100 eggs were exposed to predation by 50 larvae of a 
particular age group, in vials with 8 g food medium. 

As the larvae and adults of Tribolium feed on and move through the culture medium, they 

alter its physical and chemical characteristics in many ways, although food medium in a 



Stability in Model Populations  Tribolium 

L. D. Mueller & A. Joshi  5-6 

crowded Tribolium culture does not typically disappear the way it can in high larval density 

cultures of Drosophila, presumably as a result of high cannibalism of eggs by adults which 

tends to keep larval density in check. Nevertheless, the nutritive value of flour in the medium 

is reduced with increasing age of the medium. At the same time there is also a build up of 

frass and metabolic wastes, as well as of gaseous methyl- and ethyl-quinone given off by 

adults. Flour medium in which adults and/or larvae have lived for sometime thus acquires a 

characteristic consistency and odor and is referred to in the Tribolium literature as 

“conditioned” (King and Dawson, 1972). Such “conditioning” of the flour medium has no 

effect on egg hatchability, but interestingly markedly reduces the extent of adult cannibalism 

of eggs. It also lengthens the duration of larval development and decreases egg to eclosion 

survivorship (Park, 1941). 
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FIGURE 5.3. Level of cannibalism by adults of Tribolium spp on eggs and pupae (data from Park 
et al., 1965). Data depicted are mean (s.e.) fraction of eggs/pupae cannibalized, averaged over 
4 strains of each species. Egg cannibalism was recorded in vials containing 8 g of food medium 
and 100 eggs, exposed to predation by 25 males and 25 females for a duration of 48 hours. 
Pupal cannibalism was recorded in vials containing 8 g of food medium and 200 fresh pupae, 
exposed to predation by 10 males and 10 females for a duration of 7 days. 
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There appears to be considerable additive genetic variation for development time in both 

T. confusum and T. castaneum, as selection for both faster and slower development has been 

successful in these species (Dawson, 1965; Engler and Bell, 1970). The distribution of 

development time in T. confusum is of the typical “bell shape” usually seen in insects reared at 

moderate densities, whereas that of T. castaneum is distinctly non-normal and often bimodal 

(Lerner and Ho, 1961). There is at present no clear explanation for why this is so, but it is 

interesting in the light of a recent observation that adaptation to extremely crowded 

environments in Drosophila laboratory cultures can lead to the evolution of two distinct 

strategies for dealing with high larval density, resulting in some individuals being fast feeders 

and early developers whereas others are slower feeders and developers but exhibit greater 

tolerance to toxic metabolic waste (Borash et al., 1998). 
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FIGURE 5.4. Level of cannibalism by larvae of Tribolium spp on pupae (data from Park et al., 
1965). Data depicted for ‘experimentals’ are mean (s.e.) fraction of pupae cannibalized, 
averaged over 4 strains of each species. Pupal cannibalism was recorded in vials containing 8 g 
of food medium and 50 pupae, exposed to predation by 100 6-day old larvae for a duration of 8 
days. Controls were vials set up similarly except that no larvae were added: the ‘control’ data are 
mean levels of pupal mortality in the absence of larval cannibalism. 
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To sum up, the major effects of density, of both adults and larvae, on the pre-adult 

stages of Tribolium are as follows (some effects of increased density are mediated through 

“conditioning” of food medium): 

 (i) Pre-adult development time and mortality increase with increasing density. 

 (ii) Mortality of eggs and pupae through cannibalism increases with increasing 

 density of larvae and adults, although cannibalism rates per adult decline with 

 increasing density.  

 (iii) Mortality of eggs and pupae through cannibalism decreases with increase in 

 their density for any given density of larvae and adults. 

 (iv) Pre-adult mortality due to cannibalism at any given density may be lower in 

 “conditioned” as compared to fresh medium. 

Of these, it is generally felt that the rates of cannibalism of eggs by larvae, and those of 

cannibalism of eggs and pupae by adults, are the major density-dependent factors affecting 

the dynamics of Tribolium cultures (Dennis et al., 1995) (fig. 5.5). 
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FIGURE 5.5. Summary of the major density-dependent effects on life-history traits in laboratory 
cultures of Tribolium. Cannibalistic interactions are depicted with solid lines, whereas non-
cannibalistic effects are depicted with dashed lines. Thick lines indicate the effects that are 
thought to dominate the dynamics of Tribolium cultures. 

Adult Stage 

Although adults in a typical Tribolium culture are outnumbered by larvae and pupae, the 

adult stage is very important in determining the dynamics of these cultures. Adult lifespan is 

an order of magnitude greater than the duration of the pre-adult stages, and adult density 

feeds back on pre-adult numbers through “conditioning” of the medium, density-

dependence of female fecundity, and, most importantly, cannibalism of eggs, larvae and 

pupae (King and Dawson, 1972; Costantino and Desharnais, 1991). In the previous section, 

we have already outlined the major effects of adult density on pre-adult stages. Here we 

discuss adult cannibalism in slightly greater detail, and also discuss the effect of adult density 

on female fecundity. 
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As described earlier, adult Tribolium beetles feed upon eggs, pupae and callows. The rates 

of cannibalism by adults tend to be higher than those of larvae, and adult cannibalism of 

pupae is more severe than that of eggs (Desharnais and Liu, 1987) (fig. 5.3). Females of both 

T. confusum and T. castaneum exhibit cannibalism rates several times greater than males (King 

and Dawson, 1972). Unlike larvae, cannibalism rates of adults do not seem to increase 

significantly with age. The basic nature of cannibalistic interactions in Tribolium has been 

viewed as the outcome of random collisions between eggs/pupae and larvae/adults, with 

some probability of an egg getting eaten upon a collision (Crombie, 1946). This has led to 

the formulation of mortality due to cannibalism as a linear function of the number of 

predator (larvae or adult) individuals that simply adds on to an intrinsic mortality rate 

(Hastings and Costantino, 1987). Alternatively, one can define cij as the probability that a 

predator (larva or adult) j encounters a prey (egg or pupa) i in a given period of time, given a 

total predator population of N during that time interval. Then, assuming predator prey 

contacts to be random, and assuming that a contact means the prey gets eaten, the 

probability of a prey item not getting eaten in the given time interval is (1 - cij)
N, which can be 

approximated as exp(-cijN) (Dennis et al., 1995). This approach to modeling cannibalism has 

often been used in models of Tribolium population dynamics, even though it ignores the 

phenomenon of predator satiation: survival of pupae despite cannibalism by adults actually 

increases at higher adult densities (Park et al., 1968; Mertz and Davies, 1968). 
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FIGURE 5.6. Schematic representation of the profile of age-dependent female fecundity in T. 
castaneum (data from Howe, 1962). Data are from 12 females and 12 males kept in a vial at 25o 
C and 70% relative humidity. Fecundity increases early in life to a maximum, remains fluctuating 
at that level untill an age of 100-120 days, and thereafter undergoes an almost linear decline. It 
should be noted that this is an idealized representation of observed trends; actual fecundities 
fluctuate considerably from day to day. 

In many insect species, density-dependent control of female fecundity is a major 

component of population regulation. Like in many other insects, fecundity of Tribolium 

females is dependent upon both age and adult density. Fecundity tends to pick up rapidly 

after a few days and peaks relatively early in adult life. Thereafter, fecundity remains around 

its maximum level for a considerable time before beginning to undergo a more or less linear 

decrease with age (fig. 5.6). Daily fecundity in Tribolium is rather low in comparison to many 

other insects. Even under ideal conditions of fresh medium, low density and temperature of 

34oC, fecundity in Tribolium does not exceed ~ 20 eggs per day per female (Park and Frank, 



Stability in Model Populations  Tribolium 

L. D. Mueller & A. Joshi  5-12 

1948). By comparison, daily fecundity of well fed Drosophila females at very low densities can 

exceed 100 eggs per day. The decline of fecundity with increasing adult density in Tribolium is 

also not very dramatic. We have fitted a hyperbolic equation used to model adult density 

effects on female fecundity in Drosophila (F(Nt) = a/(1 + bNt): Mueller and Huynh, 1994) to 

data on mean fecundity of Tribolium females at various adult densities (fig. 5.7).  

adult density per vial in 20 g media

0 100 200 300 400 500 600 700

m
ea

n 
nu

m
be

r 
of

 e
gg

s
pe

r 
fe

m
al

e 
pe

r 
da

y

0

2

4

6

8

10

12

14

observed
predicted

 

FIGURE 5.7. Decline in fecundity of Tribolium females with increasing adult density. Observed 
data are from Rich (1956), pooled across several different treatments with varying duration of 
exposure to a given density. The solid line connects predicted data points based on least-
squares fitting of a hyperbolic function modeling fecundity as a function of adult numbers at time 
t, Nt , as F(Nt) = a/(1 + bNt). 

The model fits the data very well (R2 = 0.99), and yields estimates of a = 13.61, b = 3.06 × 

10-3. What is more pertinent here is the very low value of parameter b, which determines the 

sensitivity of female fecundity to increases in adult density. For example, in Drosophila, even 
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under a nutritional regime that markedly reduces the sensitivity of fecundity to adult density, 

the estimate of b is an order of magnitude larger at 2.227 × 10-2 (Mueller et al, 1999). 

Fecundity of females in Tribolium is also reduced in “conditioned” medium (King and 

Dawson, 1972). Overall, then, fecundity in Tribolium tends to be rather low, even at low 

densities and is, moreover, relatively insensitive to adult density. These two facts together 

suggest that density-dependence of female fecundity may not play a very significant role in 

determining the dynamics of Tribolium cultures. Indeed, the consensus seems to be that the 

primary determinants of Tribolium population dynamics are density-dependent cannibalism 

rates, and rates of adult mortality which do not appear to be strongly density-dependent 

(Dennis et al., 1995). Moreover, adult mortality rates are also relatively age-independent, at 

least over the range of ages for which fecundity is relatively high in Tribolium spp (fig. 5.8). 
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FIGURE 5.8. Age-specific mortality rates (‘observed’ data) for adults of Tribolium spp (data from Young, 
1970). ‘Predicted’ lines correspond to expectations based on fitting the Gompertz equation relating mortality 
rates to age ((x) = Aex) to the data from the two species. Parameter estimates are A = 0.0749 and  = 
0.00639 for T. confusum (R2 = 0.94), and A = 0.0901 and  = 0.00742 for T. castaneum (R2 = 0.87). The 
arrow indicates the age beyond which fecundity declines rapidly with increasing age. 

A MODEL OF TRIBOLIUM POPULATION DYNAMICS 

In most typical laboratory cultures of Tribolium where food is renewed at regular 

intervals, larval and pupal numbers tend to show large and fairly regular fluctuations whereas 

adult numbers tend to show relatively stable dynamics (figs. 5.9, 5.10), consistent with the 

notion of a steady-state distribution of adult population size (Desharnais and Costantino, 

1982; Dennis and Costantino, 1988; Peters et al., 1989). It has also been seen that the 

dynamics of adult numbers are to a large degree affected by the initial age-composition of 

the founding population. Populations initiated entirely by adults tend to show greater 
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fluctuations in adult numbers from one census to the next, as compared to populations 

established with a mix of individuals of the various life-stages. Some of the early studies also 

established that egg and pupal numbers tend to oscillate in Tribolium cultures, largely due to 

cannibalistic interactions between larvae and eggs (King and Dawson, 1972). Young (1970) 

showed that cannibalism of pupae rather than eggs was largely responsible for regulating the 

equilibrium adult number.  
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FIGURE 5.9. Dynamics of larval (active feeding larvae), pupal (post-feeding larvae, pupae and 
callows) and adult numbers over a 20 week period in a culture of Tribolium castaneum with 
resources renewed every 2 weeks. Data are from Control Population ‘a’ of Desharnais and Liu 
1987, and are fairly representative of dynamics of Tribolium cultures maintained on similar 
schedules. 

A Model of Egg-Larva Dynamics 

It is clear from the ecology of Tribolium cultures discussed above that the major factors 

likely to dominate the dynamics of laboratory populations of Tribolium are the density-
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dependent cannibalism of eggs by larvae, and of eggs and pupae by adults. Indeed, the 

observed oscillations in egg, larval, and pupal numbers can be explained satisfactorily by a 

consideration of the egg-larva cannibalistic interaction alone. Early on, Chapman (1933) had 

noted the apparent similarity between the phase-lagged oscillations of egg and larval 

numbers observed in Tribolium cultures and those predicted by models of predator-prey 

interactions.  
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FIGURE 5.10. Results of time series analysis on data for larval, pupal and adult numbers 
depicted in figure 5.9. The first panel shows the autocorrelations, and the second the 
periodogram of the three time series. All data were detrended before analysis. For larvae and 
pupae, autocorrelations for the first 7 and 6 lags, respectively are significant at the 0.05 level, 
whereas for adults the autocorrelations at lags 1, 2, 10 and 14 are significant. 

Hastings and Costantino (1987) focus on the cannibalistic interaction between eggs and 

larvae, ignoring changes in the number of adults because larval-egg dynamics are taking place 

on a faster time scale than adult dynamics. The age (a) distribution in the population at time 

t, denoted by n(t, a), satisfies  

(5.1)  



 n t a

t
n t a

a t a n t a( , ) ( , ) ( , ) ( , )   , 
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where (t, a) is the time- and age-specific death rate, which also encompasses cannibalism 

rates. Birth rate, b(t), included as a boundary condition n(t,0) = b, is taken as a constant 

because adult population size is assumed not to change on the time scale of egg-larval 

dynamics. The death rate, (t, a), is modeled as 

(5.2) 
 
 

( , ) ( ) ,

( , ) ,

t a c N t for a A and

t a for A a A A
e l l e

l e e l

   
   

0
 

where ages 0 through Ae, and Ae through Ae + Al, are assumed to denote eggs and larvae, 

respectively. Egg mortality through effects other than larval cannibalism is e; this includes 

egg cannibalism by adults, also taken as a constant. Mortality of larvae is l , and the death 

rate of eggs through larval cannibalism is assumed to be linear and is denoted by clNl(t), 

ignoring the effect of larval age and egg density on cannibalization rates. Ultimately, a single 

equation for the number of larvae at time t is obtained as 

(5.3)  N t b A c N t a s ds a dal

A

e e l l

A

l

l e

( ) exp ( ) exp( )    





 0 0
  . 

Equation 5.3 is the basic model analyzed by Hastings and Costantino (1987), assuming 

further that the low death rate of Tribolium larvae justifies setting l = 0. 

Analysis of this model reveals that equation 5.3 has a unique equilibrium as long as b > 0, 

and the equilibrium size of the larval population, Nl, is the solution of 

(5.4)    exp( )exp(  ) exp( )N bA A c A N A Al l e e l e l l l l l     1 . 

This equilibrium lN̂  can be locally stable or unstable, leading to oscillatory behavior, 

depending upon the egg production rate (b), larval cannibalism rate (cl) and the duration of 

the egg and larval stages (Ae, Al, respectively). In general, for a given value of cl, and 

assuming l to be very small, the equilibrium is stable for very short or very long larval 
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periods, and this result is relatively independent of the egg production rate (fig. 5.11). For 

intermediate levels of larval duration (~ 5-30 days), the equilibrium is stable only for low egg 

production (< 100 eggs per day or so). Longer egg durations are destabilizing in this model; 

as egg duration is increased for any fixed larval duration, the maximal value of b permitting a 

stable equilibrium decreases quite dramatically (fig. 5.11). And finally, increased rates of 

larval cannibalism are destabilizing, causing a reduction in the parameter space permitting a 

stable equilibrium. 
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FIGURE 5.11. Schematic depiction of the stability boundary for the equilibrium number of larvae 
in the model of egg-larval dynamics (eq. 5.3). The different curves correspond to increasing 
durations of the egg period. Parameter values above the curves yield unstable equilibria, causing 
oscillations in larval numbers, whereas those below the curves yield locally stable equilibria 
(modified after Fig. 1 in Hastings and Costantino, 1987). 
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What is somewhat interesting in this model (eq. 5.3) is that it suggests that there are 

many biologically meaningful combinations of parameters for which the equilibrium larval 

number is locally stable. Yet, practically every study on real populations of Tribolium spp has 

shown fairly dramatic oscillations in the numbers of eggs, larvae and pupae (Hastings and 

Costantino, 1991). By incorporating age-dependent larval cannibalism of eggs into the model 

described by equation 5.3, Hastings and Costantino (1991) show that the parameter space 

admitting a stable equilibrium in larval numbers is greatly reduced, as compared to the case 

where a constant cannibalism rate is assumed (fig. 5.12).  
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FIGURE 5.12. Schematic depiction of the effect of incorporating age-dependent cannibalism of 
eggs by larvae in the model of egg-larval dynamics (eq. 5.3). The stability boundary for the 
equilibrium number of larvae is depicted for a constant cannibalism rate of 0.024 eggs per larva 
per day, and for an age-dependent cannibalism rate rising linearly from 0 at age 0 to a maximum 
of 0.024 at about day 12. Parameter values above the curves yield unstable equilibria, causing 
oscillations in larval numbers, whereas those below the curves yield locally stable equilibria 
(modified after Fig. 3 in Hastings and Costantino, 1991). 
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Indeed, for realistic schedules of age-dependent cannibalism, drawn from empirical studies, 

the value of b required to guarantee a stable equilibrium for given values of the other 

parameters is shown to drop by one to two orders of magnitude. In other words, 

incorporation of age-dependent cannibalism of eggs by larvae into equation 5.3 yields the 

prediction that practically all Tribolium populations should show sustained oscillations in the 

numbers of pre-adult stages (Hastings and Costantino, 1991). This model has also been 

elaborated to include the pupal and adult life stages (Hastings and Costantino, 1987), 

suggesting that increases in adult cannibalism, adult mortality, and the pupal duration are 

stabilizing, whereas increases in fecundity are destabilizing. 

Over the years, many different approaches have been used to model Tribolium population 

dynamics. Early on, simple discrete models were used to describe the dynamics of adult 

numbers in Tribolium cultures (e.g. Crombie, 1946; Leslie 1962). Later, more detailed age-

structured models were also developed, and various modeling approaches were applied to 

the question of population growth in Tribolium. Detailed reviews of the mathematical models 

applied to Tribolium population dynamics have been provided by Sokoloff (1974), and by 

Costantino and Desharnais (1991). Rather than repeat what has been said before, we will 

restrict our attention to one model of Tribolium dynamics (the ‘LPA’ model of Dennis et al., 

1995) that has generated really interesting empirical work, and that holds great promise for 

future empirical investigation of more complex dynamics problems in ecology. In addition, 

we will also touch upon work on Tribolium that has been motivated by viewing stable 

equilibria in population ecology in terms of steady state distributions of population size. This 

work, too, has interesting implications for possible future experimental work on 

demographic stochasticity. 
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The Larva-Pupa-Adult (LPA) Model 

The LPA model of Dennis et al., (1995) consists of three difference equations tracking 

changes in the numbers of feeding larvae (L), post-feeding larvae, pupae and callows (P), and 

mature adults (A), respectively. The model includes density-dependent egg cannibalism by 

larvae and adults, density-dependent pupal cannibalism by adults, and density-independent 

fecundity and larval and adult mortality rates. The model ignores the egg stage altogether and 

larvae are, thus, the stage being recruited. The LPA model is written as 

(5.5a)  L bA c A c Lt t ea t el t   1 exp ( ) ,  

(5.5b)  P Lt t l  1 1( ) , 

(5.5c)  A P c A At t pa t t a    1 1exp ( ) ( ) . 

The unit of time in the model is 2 weeks, which corresponds roughly to the length of the 

larval duration, and half the length of the egg to mature adult developmental period. 

Recruitment of larvae at time t+1 is taken to be proportional to the number of adults at time 

t, At. The mean number of larvae recruited per adult in each time interval, in the absence of 

egg cannibalism is b (b > 0). The fractions ‘exp(-ceaAt)’ and ‘exp(-celLt)’ are the probabilities of 

an egg laid between time t and t+1 surviving cannibalism by At adults and Lt larvae, 

respectively. Cannibalism of larvae by adults is ignored, and, hence, a fraction (1-l) of larvae 

at time t become pupae at time t+1. The only cause of pupal mortality is assumed to be 

cannibalism by adults, and the probability of a pupa surviving to adulthood in the presence 

of At adults is given by exp(-cpaAt). Moreover, because adult life-span is large, in addition to 

pupae at time t becoming adults at time t+1, a fraction (1-a) of adults at time t survive to 

remain adults in time t+1. This model rests upon an understanding of the laboratory ecology 

of Tribolium that has been built up over the years and, consequently, only those factors likely 
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to have a large impact on population dynamics enter into the model as parameters. Thus, the 

model ignores the relatively weak density dependence of larval and adult mortality, and of 

adult fecundity, as well as the limited degree of pupal cannibalism by larvae and larval 

cannibalism by adults. The age-dependence of egg cannibalism by larvae is similarly ignored. 

Essentially, the LPA model encompasses only density-independent fecundity and larval and 

adult mortality, and density-dependent mortality of eggs and pupae due to cannibalism. 

The LPA model (eqs. 5.5 a-c) is not amenable to an analytical description of stability 

properties unless egg cannibalism by larvae is ignored (cel = 0). In this simplified case, there is 

a trivial equilibrium at extinction (L, P, A = 0), which is stable unless b > a/(1-l). If the 

latter condition holds, there is one non-negative equilibrium (L, P, A > 0), the stability of 

which depends upon fecundity (b), adult mortality (a), and the ratio of the rates of pupal 

and egg cannibalism by adults (cpa/ cea). Depending upon the values of these parameters, the 

non-negative equilibrium can be stable or unstable, especially for high values of b and a, 

giving rise in the latter case to either stable 2-cycles or aperiodic orbits on an invariant loop. 

Numerical analyses reveal a similar range of dynamic behaviors to be present for the full 

model that includes egg cannibalism by larvae. A numerically calculated stability portrait of 

the full model (eqs. 5.5 a-c), incorporating values of cea, cpa, cel, and l derived by averaging 

parameter values estimated for four laboratory populations of the cos (corn-oil sensitive) 

strain of T. castaneum, shows clearly the dynamic outcomes associated with different regions 

of b-a space (fig. 5.13).  

It is clear from this stability portrait that for parameter values in the typical range of 

Tribolium cultures, the most commonly observed dynamic behavior would be stable 2 cycles, 

although extinction, stable point equilibria and loops are also possible (figs. 5.13, 5.14).  
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FIGURE 5.13. Schematic depiction of stability boundaries for the LPA model (eqs. 5.5 a-c) for 
typical parameter values based on ‘overall’ estimates (see table 1) from four laboratory 
populations of the cos strain of T. castaneum (modified after Fig. 3 in Dennis et al., 1995). 
Asterisks denote the b-a coordinates of the four populations. 

Indeed, the LPA model raises the possibility of fairly complex behaviors, especially when 

adult mortality is relatively high. If fecundity is low (~ 4-8 larvae recruited per adult per time 

interval in the absence of cannibalism of eggs), there are stable equilibria for a wide range of 

adult mortality rates. At very high rates of adult mortality, there is a bifurcation from a stable 

fixed point to an invariant loop, leading to aperiodic cycles. For fecundity values of ~ 8-12, 

which are often seen in Tribolium cultures, results in a sequence of changes in dynamic 

behavior as adult mortality rates increase. At extremely low adult mortalities, there are stable 

equilibria, which soon bifurcate to stable 2-cycles. With further increase in adult mortality, 
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there is a narrow band of a values for which stable equilibria and 2-cycles coexist. 

Continued increase in a again yields a range of values for which only stable equilibria exist, 

and, eventually, at high values of a, a bifurcation to invariant loops occurs.  

TABLE 5.1. Maximum likelihood estimates of parameters of the stochastic LPA model for the four 
control populations of Costantino and Desharnais (1980). The parameter values for the model 
fitted to data from all four populations (overall) and a 95% confidence interval, calculated from 
profile likelihoods, for these overall parameters are also given (data from Dennis et al, 1995). 

Population b a l cea cel cpa 

A 19.85 0.096 0.473 0.016 0.010 0.020 

B 15.49 0.100 0.501 0.013 0.010 0.017 

C  5.53 0.148 0.508 0.006 0.007 0.018 

D  9.13 0.103 0.565 0.009 0.008 0.017 

Overall  

(95% c.i.) 

11.68 

(6.2-

22.2) 

0.111 

(0.07-

0.15) 

0.513 

(0.43-

0.58) 

0.011 

(0.004-

0.018) 

0.009 

(0.008-

0.011) 

0.018 

(0.015-

0.021) 
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FIGURE 5.14. Simulated time series depicting dynamic behaviors corresponding to the three 
regions in the stability portrait of the LPA model (fig. 5.13). Cases A, B, and C represent 
parameter values for which the predicted dynamics are stable 2-cycles, stable equilibria, and 
aperiodic cycles (loops), respectively. All parameter values other than a are the same in all three 
cases (b = 11.677, l = 0.5129, cea = 0.011, cel = 0.0093, cpa = 0.0178), and are based on ‘overall’ 
estimates (see table 1) from four laboratory populations of the cos strain of T. castaneum (data in 
Table 1, Dennis et al., 1995). 

For values at the higher end of the spectrum of fecundity seen in Tribolium cultures (b ~ 20), 

there are stable 2-cycles until adult mortality is quite high, after which there is a zone of 

multiple attractors, first 2-cycles along with stable fixed points, and later 2-cycles along with 
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invariant loops. For very high values of a, once again the outcome is invariant loops. In 

practically all situations where a stable equilibrium exists, moreover, it is approached via 

damped oscillations, whose amplitude increases in the case of populations situated near the 

boundary between stable equilibria and 2-cycles/invariant loops. Thus, for fecundity values 

of ~8-22, a range which would include most laboratory populations of Tribolium, the stability 

boundary between fixed points and 2-cycles would, in practice, tend to be somewhat blurred 

because of the difficulty in clearly distinguishing between relatively long-lasting transient 

oscillations of reasonably large amplitude and genuine stable 2-cycles. 

Another issue that needs to be dealt with in the case of real populations is that of 

stochasticity in the dynamics, whether environmental (due to fluctuations in model 

parameters as a result of random environmental changes over time) or stochastic (due to 

intrinsic fluctuations in birth and death rates). The consideration of stochasticity has led to 

attempts to define and understand population regulation and equilibria in terms of the long-

term steady-state distribution of population numbers (e.g. Turchin, 1995a and references 

therein). In the case of Tribolium, modeling the population of adult numbers using a 

stochastic variation of the continuous time exponential model that ignores much of the 

biology of the pre-adult stages, yields dN dt N b cNt t t   ( exp [ ] )  , where  t , or 

Gaussian white noise, is the derivative of a stochastic function (the Wiener increment) which 

is a continuous time equivalent of a discrete random variable with no serial autocorrelations, 

the amplitude of whose fluctuations is measured by  (Costantino and Desharnais, 1991). 

From this model, the stationary distribution of adult numbers can be determined in several 

ways and is approximated by the gamma probability distribution (Costantino and Desharnais, 

1991); slightly different formulations also yield the gamma distribution as an approximation 

of the stationary distribution of adult numbers in Tribolium (Costantino and Desharnais, 
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1981; Dennis and Costantino, 1988; Peters et al, 1989). Similarly, a stochastic version of the 

LPA model (see eqs. 5.6 a-c, next section) also yields stationary distributions of adult 

numbers that are well approximated by a gamma distribution (fig. 5.15), provided the 

underlying dynamics are either a stable equilibrium or a stable cycle of relatively small 

amplitude (Dennis et al., 1995).  
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FIGURE 5.15. Representative examples of the result of fitting a gamma distribution (dotted line) 
to observed frequency distributions of adult numbers (filled circles) obtained by simulating the 
LPA model with the stochastic components Eit (i = 1,2,3) assumed to be normally distributed with 
mean 0 and standard deviation 0.3. All parameter values, other than those indicated on the plots, 
are those listed in table 1, “overall”. Predicted dynamics for the four cases are (A) stable 
equilibrium point, (B, C) stable 2-cycles, and (D) aperiodic cycles. In all cases, both the gamma 
and lognormal distributions are consistent with the observed distribution (2 test, P > 0.35 in all 
cases), whereas the normal distribution (the predicted stationary distribution under some 
stochastic birth-death models) does not fit the data (2 test, P < 0.005 in all cases). 

At the same time, slight changes in the formulation of stochastic models can also result in 

predictions of stationary distributions of adult numbers that follow, approximately, a normal 
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or lognormal distribution (fig. 5.15; Desharnais and Costantino, 1982; Dennis and 

Costantino, 1988). Thus, especially when the ‘true’ model underlying the dynamics of a 

population is not known, and when several models are in at least reasonable agreement with 

observed data, the inferential value of being able to fit a particular probability distribution to 

observed frequency distributions of adult numbers in an apparent steady state is somewhat 

dubious. What is perhaps more interesting is the possibility of using the overall shape of the 

distribution of adult numbers to determine whether the population is fluctuating about a 

deterministic stable equilibrium point, or if the fluctuations themselves are basically 

deterministic in origin, and are merely overlaid by further stochastic noise. The typical 

prediction in the former case is for a unimodal distribution of adult numbers, skewed to the 

left, whereas in the latter case, bimodal, multimodal, or irregular distributions may be 

expected (Dennis and Costantino, 1988). It may also be worthwhile to examine whether 

different types of stochasticity are likely to give rise to differing predictions about the nature 

of the steady state distribution of adult numbers. 

Empirical Evaluation of the LPA Model 

In general, there are several complementary ways to empirically evaluate the aptness of a 

model as a descriptor of the dynamics of real populations. At the simplest and crudest level, 

one can simply ask whether the model fits observed data reasonably well. At a slightly more 

rigorous level one may examine the predictive power of the model by fitting it to data from 

populations different from those used to estimate the values of model parameters. An even 

more rigorous approach is to use the model to predict the dynamic consequences of 

particular changes in parameter values, and then test the validity of the predictions using 

populations exhibiting those specific constellations of parameter values; such populations 

can often be obtained through experimental manipulation of the laboratory ecology of the 
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organism, especially in relatively well studied model systems. In the case of the LPA model, 

all these approaches have been used, and the overall conclusion is that the model does seem 

to provide a good description of the essential features of the dynamics of laboratory 

populations of Tribolium. 

Dennis et al (1995) used 38 week long time series of larval, pupal and adult numbers 

from 13 populations of the cos strain of T. castaneum, subjected to different demographic 

perturbations, in order to evaluate the LPA model. These data were from experiments 

conducted by Costantino and Desharnais (1980), and the complete time series were 

published in Desharnais and Liu (1987). The populations were all initiated with 64 young 

adults, 16 pupae, 20 large larvae, and 70 small larvae in 20 g of corn oil medium in a half-pint 

milk bottle. The numbers of adults, larvae and pupae in each population were recorded every 

two weeks and all eggs, larvae, pupae and adults placed into a fresh culture bottle. Four of 

the populations served as controls and underwent no perturbation. Of the remaining nine 

populations, three populations each were subjected to one of three demographic 

perturbations at the tenth week: (i) addition of 100 adults, (ii) removal of all adults, and (iii) 

removal of all pre-adult stages. To evaluate the aptness of the LPA model, Dennis et al 

(1995) fitted a stochastic version of the model to data from the four control populations and 

obtained both maximum likelihood and conditional least squares estimates of the model 

parameters. 

The stochastic version of the LPA model (henceforth, SLPA model) includes noise 

terms for larval, pupal and adult numbers that are additive on a logarithmic scale, and may be 

mutually correlated across life-stages within a given time interval. The noise terms, however, 

are assumed to be uncorrelated across time. The SLPA model is, thus, written as 

(5.6a)  L bA c A c L Et t ea t el t t    1 1exp ( ) , 
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(5.6b)  P L Et t l t  1 21( )exp ( ) , 

(5.6c)  A P c A A Et t pa t t a t    1 31[ exp ( ) ( )]exp ( ) , 

where {E1t, E2t, E3t} = Et is a random vector with a trivariate normal distribution of mean 

vector 0 and variance-covariance matrix . Incorporating error terms in a logarithmically 

additive manner suggests that environmental stochasticity is being assumed to be 

considerably more significant than demographic stochasticity (Dennis et al, 1991). In order to 

repose greater confidence in the results, parameter values were estimated by both maximum 

likelihood methods, which are sensitive to departures from multivariate normality of the 

distribution of Et , and least squares methods that are more robust to variation in the 

distribution of Et and, moreover, should yield estimates similar to the maximum likelihood 

estimates if trivariate normality of Et holds good (Dennis et al, 1995). 

The parameters for the four control populations, estimated by maximum likelihood 

methods (table 5.1), suggest that three of the populations should show 2-cycles, whereas one 

should show a stable point equilibrium (fig. 5.13). The conditional least squares and 

maximum likelihood estimates were in fairly close agreement, suggesting that the normality 

assumption for Et was not grossly violated. The ‘overall’ parameter values, obtained by 

fitting the SLPA model to data from all four control populations (table 5.1), also fall into the 

region of b-a space where the outcome is stable 2-cycles. The maximum likelihood 

estimates of parameter values were then used to fit the LPA model to the data from each of 

the four control populations. Analysis of the residuals from this fitting for the functions 

Lt+1(Lt,At), Pt+1(Lt) and At+1(Pt, At) (eqs 5.5 a-c) also revealed no systematic departure from 

univariate normality for either of the three state variables Lt ,Pt  and At (Dennis et al, 1995). 

The ‘overall’ values were further used to generate one-step forecasts (E[ N Nt t1 ]; N = L, P, 
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A) for larval, pupal and adult numbers at each census period for the four control 

populations. Comparison of predicted versus observed numbers of individuals showed that 

these forecasts were reasonably accurate (Dennis et al, 1995). As a further means of testing 

the validity of the LPA model as a descriptor of the underlying population dynamics of 

Tribolium cultures, Dennis et al (1995) tested the hypothesis that the four populations 

represented true replications of a single underlying model. This was done by examining, by 

means of a likelihood ratio test, whether the parameters estimated for the four populations 

were identical; the test failed to reject the null hypothesis of equality of parameters across the 

four populations. 

In order to further assess the predictive power of the LPA model, Dennis et al (1995) 

used the ‘overall’ parameter values estimated from the four control populations to generate 

one-step forecasts for larval, pupal and adult numbers at each census period for the nine 

populations subjected to demographic perturbations. The question asked here was whether 

the model could successfully predict the dynamics of populations not used for the parameter 

estimation. Once again, comparison of predicted versus observed numbers of individuals 

showed that these forecasts were reasonably accurate (fig. 5.16). In all the three treatments in 

which populations were demographically perturbed at week 10, the one-step forecasts agreed 

quite well with the observed numbers in all replicate populations. In general, the agreement 

was better for pupal and adult numbers, as compared to that for larval numbers; this may be 

a consequence of ignoring age-dependent larval cannibalism of eggs. In the treatment in 

which all adults were removed, however, there was a major discrepancy between the 

predicted and observed numbers of larvae at week 12, the census period immediately after 

the perturbation. The prediction here was of no larvae at week 12, because all adults were 

removed at week 10. However, as this was not, strictly speaking, a discrete time culture, there 
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would still have been eggs in the medium laid by adults between weeks 8 and 10, prior to 

their removal. Consequently, larvae were observed at the week 12 census, contradicting the 

prediction. Thereafter, the model again yielded predictions that were consistent with the 

observed data on larval numbers. The prediction error analysis also supported the LPA 

model in that only moderate departures from normality were observed for the differences 

between observed numbers and one-step forecast numbers, and that too in only 10 of the 27 

time series (Dennis et al, 1995). 



Stability in Model Populations  Tribolium 

L. D. Mueller & A. Joshi  5-33 

nu
m

be
r 

of
 p

up
ae

0

50

100

150

200

250

300

350

nu
m

be
r 

of
 a

du
lts

0

50

100

150

200

250

300

350

observed
one-step forecast

time (weeks)

0 10 20 30 40

nu
m

be
r 

of
 la

rv
ae

0

50

100

150

200

250

300

350

100 adults added

 

FIGURE 5.16. Data from one representative population (replicate A in the treatment wherein 100 
adults were added to the culture at week 10 in the experiment of Desharnais and Liu, 1987) 
showing the observed time series for larval (active feeding larvae), pupal (post-feeding larvae, 

pupae and callows) and adult numbers, along with the one-step forecasts (E[ N Nt t1 ]; N = L, P, 

A) from the LPA model using the ‘overall’ parameter values given in table 5.1. 

Two subsequent studies by R. F. Costantino and co-workers put the LPA model to even 

more stringent empirical tests (Costantino et al, 1995, 1997; Dennis et al., 1997). In these 

studies, parameters of the LPA model were empirically estimated for various Tribolium 
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strains, and the ensuing stability portraits were used to predict the effect of altering adult 

mortality rate (a) and the rate of pupal cannibalism by adults (cpa) upon the dynamics of 

cultures of those strains. Laboratory populations of those strains were then subjected to 

experimental manipulation of the values of these two parameters, and the ensuing dynamics 

recorded and compared to the predictions. In one study (Costantino et al, 1995), 24 cultures 

each of two genetic strains of T. castaneum (RR and SS) were established with 100 young 

adults, 5 pupae, and 250 young larvae in 20 g media in a half-pint milk bottle. Every two 

weeks for 36 weeks, the larval, pupal and adult stages were censused and all stages, including 

eggs, were transferred to a fresh culture bottle. At week 12, 4 populations of each strain were 

assigned to each of 6 treatments which differed in adult mortality rates. In these treatments, 

adult mortalities of a = 0.04, 0.27, 0.50, 0.73, and 0.96, respectively, were experimentally 

imposed during the census by removing or adding the number of adults required to keep the 

post census number consistent with the assigned mortality rate. Four control populations of 

each strain, expressing their intrinsic mortality rate, were also maintained. Data for weeks 12 

through 36 from two of the replicate populations in each treatment were used for estimating 

parameters of the LPA model and developing stability portraits to use for predicting 

dynamic behavior at different mortality levels (table 5.2). Data from the remaining two 

replicates of each treatment were used for evaluating the model predictions. 

The various mortality rates were initially chosen so as to place populations in various 

locations (along the a axis) of parameter space that would yield qualitatively different 

dynamic behavior, based upon the stability portrait of the cos strain of T. castaneum (fig. 5.13) 

studied by Dennis et al (1995). However, differences in parameters of the LPA model for the 

SS and RR strains (table 5.3) give rise to slightly differing stability portraits, leading to 

varying predictions of dynamic behavior at a = 0.75, 0.96 (table 5.2).  
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TABLE 5.2. Predicted dynamic behavior of cultures of three genetic strains of T. castaneum at 
different levels of adult mortality, based on the LPA model. 

Adult Mortality 

(a) 

cos Strain RR Strain SS Strain 

control* stable 2-cycles stable equilibrium stable equilibrium 

0.04 stable 2-cycles stable equilibrium stable equilibrium 

0.27 stable 2-cycles stable 2-cycles stable 2-cycles 

0.50 stable equilibrium stable 2-cycles stable 2-cycles 

0.73 stable equilibrium 

close to boundary for 

aperiodicities 

stable equilibrium 

close to boundary for 

2-cycles 

stable equilibrium 

0.96 aperiodicities stable equilibrium 

close to boundary for 

aperiodicities 

Aperiodicities close to 

boundary for stable 

equilibrium 

 

Overall, the observed dynamics agreed qualitatively with the predictions. At a = 0.04, adult 

numbers in both strains approached a stable equilibrium quite rapidly (on a time scale similar 

to the controls), whereas larval numbers displayed oscillations for a few weeks longer than 

the controls before damping became evident. At a = 0.27 and 0.50, where the prediction 

was for stable 2-cycles, both adult and larval numbers in both strains displayed regular 

oscillations that were more pronounced in the case of larvae. Fluctuations in adult numbers 

at a = 0.27 were regular, but of small amplitude, and with some indication of damping, 

whereas at a = 0.50, the adult numbers also displayed sustained oscillations of relatively 

large amplitude. For a = 0.73 the predictions differed between strains.  
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TABLE 5.3. Maximum likelihood estimates of parameters of the LPA model for three genetic 
strains of T. castaneum. 

Parameter cos Strain RR Strain SS Strain 

fecundity (b) 11.6772 7.88 7.48 

larval mortality (l) 0.5129 0.161 0.267 

adult mortality (l) 0.1108 0.0042 0.0036 

egg cannibalism by adults (cea) 0.0110 0.011 0.009 

egg cannibalism by larvae (cel) 0.0093 0.0138 0.0119 

pupal cannibalism by adults (cpa) 0.0178 0.004 0.004 

Data for cos strain are from Dennis et al, (1995), and for the RR and SS strains from Costantino 
et al (1995). 
 
The RR strain was in the region of parameter space predicting stable equilibrium, but very 

close to the boundary of 2-cycles, and the populations exhibited sustained oscillations in 

both adult and larval numbers. The SS strain was predicted to show a stable equilibrium at a 

= 0.73, and the observed data did suggest a damped oscillatory approach to equilibrium in 

both larvae and adults. For a = 0.96, the RR strain was predicted to be in the region of 

stable equilibria, but very close to the boundary of the region of invariant loops giving rise to 

aperiodic cycles, whereas the SS strain was predicted to be in the region of aperiodic cycles, 

but close to the boundary of the region for stable equilibria. Thus, both strains were 

expected to show aperiodic oscillations, at least for the relatively short duration of the time 

series observed; populations in the stable equilibrium region close to the boundary of 

aperiodicities are expected to show aperiodic appearing transients for a fairly long period of 

time (Dennis et al, 1995). At a qualitative level, this prediction of aperiodic oscillations was 

borne out by the data from both strains. Overall, as in the case of the study of the cos strain 

by Dennis et al (1995), the analyses of time series residuals suggested that the SLPA model 
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provided an adequate description of the essential features of the dynamics of the RR and SS 

strains of T. castaneum (Costantino et al, 1995). 

In another experiment, similar in many ways to the one described above, Costantino et al 

(1997) examined predicted transitions to chaotic dynamics in greater detail. They used 24 

cultures of the RR strain of T. castaneum, each initiated with 250 small larvae, 5 pupae, and 

100 young adults in 20 g food medium in a half-pint milk bottle. The adult mortality rate was 

experimentally set at a = 0.96 for all cultures. All populations were censused and transferred 

to fresh medium every two weeks for a total of 80 weeks. Three populations were assigned 

to each of eight treatments, in seven of which rates of recruitment into the adult stage 

(Ptexp(-cpaAt)) were experimentally manipulated so as to yield cpa values of 0.0, 0.05, 0.10, 

0.25, 0.35, 0.50, and 1.0, respectively. The eighth treatment was a control. Maximum 

likelihood estimates of the parameters of the LPA model were used to generate predictions 

of the dynamic behavior expected in each treatment (table 5.4), and the observed dynamics 

were compared to the predicted behavior. 

In general, the experimental manipulations appeared to have a destabilizing effect. 

Compared to the control populations, there was a much greater degree of fluctuation in the 

populations subjected to experimentally imposed cpa values. The observed time series, 

nevertheless, were in reasonably good agreement with the predictions. Lyapunov exponents 

for chaotic systems are expected to be positive, whereas systems with stable equilibria or 

stable periodic cycles are characterized by negative Lyapunov exponents. Systems with quasi-

periodic invariant loops are expected to show a Lyapunov exponent of 0. The estimated 

Lyapunov exponents thus can be used to numerically categorize the observed dynamics 

(table 5.4).  
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TABLE 5.4. Predicted dynamic behavior and estimated Lyapunov exponents of laboratory 
populations of T. castaneum subjected experimentally to varying rates of adult recruitment at an 
experimentally fixed adult mortality level of a = 0.96 (from Costantino et al, 1997; Desharnais et 
al, 1997). 

Pupal cannibalism by 

adults (cpa) 

Predicted dynamics Lyapunov exponent 

control (0.0047) asymptotic approach to equilibrium -0.0448 

0.00 oscillatory approach to equilibrium -0.2989 

0.05 stable 8-cycle -0.0257 

0.10 quasiperiodic behavior (attractor is an 

invariant loop) 

0.0000 

0.25 chaotic dynamics 0.0245 

0.35 chaotic dynamics 0.1029 

0.50 multiple attractors: stable 3-cycle, 8- or 

higher period cycles, chaotic attractors 

0.0665 

1.00 stable 3-cycle -0.1871 

Data for cos strain are from Dennis et al, (1995), and for the RR and SS strains from Costantino 
et al (1995). 
 

A further empirical study evaluating the LPA model, but focusing on the role of 

cannibalism, rather than fecundity and adult mortality, as a determinant of dynamics in 

Tribolium has recently been reported. Benoît et al (1998) manipulated cannibalism rates by 

providing refuges to various life-stages in laboratory populations of T. confusum, in order to 

assess the role of egg cannibalism by larvae and adults, and pupal cannibalism by adults, in 

determining the long-term dynamics of these populations. They established 21 populations 

of T. confusum, each initiated with 29 adults and 64 large larvae in 110 mL vials containing 20 

g flour. The populations were censused every 4 days and shifted to fresh culture vials. A total 

of seven treatments (3 populations per treatment), including a control, were imposed on 
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these populations for a duration of 284 days (table 5.5). The dynamics of egg, larval and 

adult numbers expected in each treatment were predicted by simulations of the LPA model 

(table 5), although, strangely, these simulations utilized parameter values estimated by Dennis 

et al (1995) for the cos strain of T. castaneum, rather than values for the strain of T. confusum 

used in the experiments.  

TABLE 5.5. A description of the treatments used by Benoît et al (1998) in their study of the role of 
cannibalism in dynamics of laboratory populations of T. confusum. The column on expected 
effect on cannibalism depicts the fraction to which each cannibalism rate is expected to be 
reduced by the various refuges (an entry of 1.0 suggests cannibalism at typical levels, 0.5 
suggests cannibalism reduced to half its typical level, and 0.0 indicates total protection via 
refuges, reducing the cannibalism rate to zero). Predicted dynamics are based upon simulations 
of the LPA model with systematic changes in cij values, keeping other parameters fixed at values 
reported by Dennis et al (1995) for the cos strain of T. castaneum. 

Treatment Expected effect on 

cannibalism 

cea    cel   cpa 

Predicted dynamics 

No refuge (control) 1.0  1.0  1.0 egg-larval (EL) cycles; logistic population 

growth of adults (A) 

Partial refuge for eggs 0.5  0.5  1.0 stabilization of EL cycles; logistic growth of 

A. 

Full refuge for eggs 0.0  0.0  1.0 rapid stabilization of EL cycles; logistic 

growth of A. 

Partial refuge for eggs, 

larvae and pupae 

together 

0.5  1.0  0.5 amplified EL cycles; logistic growth of A to 

higher equilibrium size. 

Full refuge for eggs, 

larvae and pupae 

together 

0.0  1.0  0.0 amplified EL cycles; exponential growth of 

A, at least within the duration of the 

experiment 
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Partial refuge for eggs, 

larvae and pupae 

separately 

0.5  0.5  0.5 stabilization of EL cycles; logistic growth of 

A to higher equilibrium size. 

Full refuge for eggs, 

larvae and pupae 

separately 

0.0  0.0  0.0 rapid stabilization of EL cycles; exponential 

growth of A, at least within the duration of 

the experiment 

 

In the control populations, no life-stage was protected from cannibalism through a 

refuge and the levels of cannibalism (cij; i = e,p, j = a,l) were, therefore, expected to be 

unchanged from those typically seen in the cultures. Consequently, these populations were 

expected to show typical Tribolium dynamics, with sustained egg and larval cycles, out of 

phase with each other (EL cycles), along with logistic population growth of adults, tending 

to a stable point equilibrium (table 5.5). In the treatments offering refuge to eggs, either half 

(partial refuge) or all (full refuge) of the eggs in the culture were removed to a separate vial at 

each census; this was expected to reduce the cannibalism rates on the eggs to 0.5 and 0.0 of 

the typical (control) values, respectively, resulting in stabilization of the EL cycles, but 

leaving the pattern of adult growth unaffected. Similarly, in the treatments offering refuge to 

eggs, larvae and pupae together, half (partial refuge) or all (full refuge) of all three pre-adult 

stages were removed to one separate vial at each census. These treatments reduce only 

cannibalism of eggs by adults and were, therefore, expected to result in amplified EL cycles. 

Reduction of pupal cannibalism by adults to 0.5 of control values was expected to yield 

logistic growth of adult numbers to a stable equilibrium size that was higher than that of the 

egg refuge treatments. A complete elimination of pupal cannibalism by adults was expected 

to free the adult population of density-dependent regulation through the impact of adult 
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density on adult recruitment from the pupal population, leading to a prediction of 

exponential growth of the adult population, at least for the 284 day duration of the study. In 

the last two treatments, either half or all of the individuals of each pre-adult life-stage were 

removed to separate vials at each census. These treatments afforded refuge to eggs, as well as 

pupae and were, therefore, expected to result in stabilization of EL cycles and either logistic 

growth of the adult population to a higher equilibrium size (partial refuge) or exponentially 

increasing adult numbers (full refuge). 

Temporal variability in the observed time series of numbers of small larvae (< 2 mm; 

surrogate for eggs), large larvae, and pupae was assessed by looking at the standard deviation 

of log-transformed values of the time series, as well as the amplitude of observed cycles. The 

discrete time exponential logistic model A A r A Kt t t  1 11exp [ ( / )]  was fit to the adult 

time series data, and used to estimate the equilibrium number K in treatments where an 

equilibrium adult population size appeared to be attained. To avoid complications arising 

due to the presence of transients, only data after day 125 were used in the analyses. Overall, 

the observed pattern of effects of the various treatments on the dynamics of small and large 

larvae, pupae, and adults was in good agreement with predictions based on the LPA model 

(tables 5.5,5.6), with the exception of pre-adult dynamics in the treatments providing partial 

or full refuge to all pre-adult stages together in a single container.  

The results clearly suggest that adult numbers are controlled primarily by density-

dependent feedback acting via pupal cannibalism by adults (table 5.6). In treatments wherein 

pupal cannibalism by adults was reduced (partial refuge for pre-adult stages together or 

separately), adult numbers exhibited logistic growth to an equilibrium value higher than that 

of controls and treatments with no refuge to pupae.  
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TABLE 5.6. Summary of the dynamics of pre-adult and adult stages observed in the different 
treatments by Benoît et al (1998) in their study of the role of cannibalism in determining the 
dynamics of laboratory populations of T. confusum. 

Treatment Observed dynamics 

No refuge (control) cycles in the numbers of small (SL) and large larvae (LL) out of 

phase with each other; pupal (P) cycles of smaller amplitude than 

SL or LL; logistic population growth of adults (A), attaining an 

equilibrium size of ~ 90 adults. 

Partial refuge for eggs significant reduction in the amplitude of SL, LL, and P cycles 

compared to controls; logistic growth of A to an equilibrium of 

~ 90 adults. 

Full refuge for eggs even greater reduction in the amplitude of SL, LL, and P cycles, 

but not significantly different from treatment giving partial 

refuge to eggs; logistic growth of A to an equilibrium of ~ 150 

adults. 

Partial refuge for eggs, 

larvae and pupae 

together 

cycles in SL, LL numbers of amplitude similar to controls; 

reduced amplitude of P cycles; logistic growth of A to 

equilibrium size of ~ 250 adults. 

Full refuge for eggs, 

larvae and pupae 

together 

cycles in SL, LL numbers of amplitude similar to controls; 

reduced amplitude of P cycles; exponential growth of A, 

reaching ~ 2500 adults by the end of the 284 days. 

Partial refuge for eggs, 

larvae and pupae 

separately 

significant reduction in the amplitude of SL, LL, and P cycles 

compared to controls; logistic growth of A to an equilibrium of 

~ 300 adults.. 

Full refuge for eggs, significant reduction in the amplitude of SL, LL, and P cycles 
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larvae and pupae 

separately 

compared to controls; exponential growth of A, reaching ~ 3250 

adults by the end of the 284 days. 

 

When pupae were given complete refuge, adult numbers grew exponentially for the duration 

of the experiment, reaching levels of several thousand adults. The numbers of small and 

large larvae in the control populations exhibited the typical out of phase egg-larva cycles 

characteristic of Tribolium cultures, with the amplitude being greater in the case of small 

larvae. Densities of small and large larvae were, not surprisingly, highest in treatments 

providing full refuge to eggs, and lowest in the controls and in the treatment in which partial 

refuge was provided to all pre-adult stages together; in the latter, the eggs were exposed to 

the full strength of cannibalism by larvae and also by adults, albeit at a reduced level (table 

5.5). The most stable dynamics, based upon reduced amplitude and inconsistent period of 

the cycles among replicates, were found in treatments providing full refuge to the eggs from 

cannibalism by larvae and adults (full refuge to eggs or to all pre-adult stages separately). The 

differences in amplitude of observed oscillations in numbers of small larvae between the 

control populations (~ 90% of the mean number), and those given full egg refuge (~8% of 

the mean number), were substantial. Other than the fact that the amplitude of observed 

cycles was consistently smaller than that of small larvae, the dynamics of large larvae were 

similar to, and affected by the various treatments in the same manner, as the dynamics of 

small larvae. The effect of different treatments on cycles in pupal numbers was also 

qualitatively similar to that seen for numbers of small and large larvae. An exception to 

predicted larval dynamics was seen in treatments providing partial or full refuge to eggs, 

larvae, and pupae together. In these treatments, eggs would still be subject to cannibalism by 

larvae, a factor inducing oscillations in small larval numbers, while being protected from 
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cannibalism by adults that tends to stabilize egg-larval cycles in Tribolium. The prediction for 

these treatments, consequently, was that the amplitude of cycles in numbers of small and 

large larvae should rise as compared to the controls (table 5.5). However, the amplitude of 

small and large larval cycles in these two treatments was of the same order as the controls, 

although the amplitude of pupal cycles was reduced, compared to the control populations 

(table 5.6). This is likely due to either egg cannibalism by adults in the 4 day period between 

each census, at which point individuals were transferred to refuges, or density-dependent 

reduction of fecundity, because levels of recruitment into the small larval stage remained 

fairly constant even though adult density changed substantially. 

As stated earlier, analytical results from simple stochastic differential equation based 

models, as well as simulations of the SLPA model, predict that the stationary distribution of 

adult numbers in Tribolium can be well approximated by the gamma distribution. Indeed, in 

many laboratory populations of T. castaneum and T. confusum, this has been the case (Dennis 

and Costantino, 1988; Costantino and Desharnais, 1991). The problem, however, is that 

often the observed distributions are also consistent with probability distributions other than 

the gamma (Costantino and Desharnais, 1991); this situation is exemplified in figure 17. 

Moreover, the predicted stationary distribution may vary from species to species based, in 

part, upon differences in ecology. For example, in T. brevicornis, in which adults can delay 

pupation of large larvae thereby maintaining a relatively constant pool of recruits into 

adulthood, the predicted stationary distribution is normal, and observations are consistent 

with that prediction (Desharnais and Costantino, 1982). Thus, both the predictions about the 

nature of stationary distributions of adult numbers under different circumstances, and, to an 

even greater extent, empirical verification of these predictions, are at present somewhat gray 

areas where much further work needs to be done. 
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FIGURE 5.17. Results from fitting the gamma (solid line), lognormal (dashed line) and normal 
distributions (dotted line) to the frequency distribution of observed steady state adult numbers 
(filled circles) in a laboratory population of T. castaneum (data from Dennis and Costantino, 
1988). The gamma and lognormal distributions are consistent with the observed data, whereas 
the normal distribution is not. 

Overall, then, it seems to be clear that the dynamics of adult numbers in laboratory 

populations of Tribolium are largely regulated by adult density-dependent cannibalism of eggs, 

serving to regulate recruitment into the juvenile stage, and adult density-dependent 

cannibalism of pupae, which, in turn, regulates recruitment from the juvenile stage into the 

adult stage. The density-dependence of regulation at both these life-stage transitions is fairly 

strong, leading to relatively stable dynamics of adult numbers for typical laboratory 

populations. It is also clear that the LPA model of Dennis et al (1995) provides a good 

description of Tribolium dynamics, and empirical testing of predictions from this model 

support the view that the dynamics of different life-stages in Tribolium cultures are largely 

determined by the interplay of fecundity (all else being equal, higher fecundity is 
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destabilizing), adult mortality, and the rates of cannibalism of eggs by larvae and adults, and 

of pupae by adults. Indeed, the type of detailed and rigorous empirical work that has been 

done on the Tribolium model system underscores our argument for the importance of 

laboratory systems to research in population ecology. 
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CHAPTER SIX 

Drosophila 

Drosophila has been used as a model organism for research in biology since 1920, and 

today it is one of the best genetically characterized multicellular eukaryotes (Pearl and Parker, 

1922).  More to the point, Drosophila has also been used as a model organism for population 

ecology since the 1920s, when Raymond Pearl used Drosophila to find the “laws” which 

govern population growth and took particular interest in trying to understand empirically 

how intrinsic biological attributes of organisms could lead to density-dependent population 

regulation.  However, much of the enthusiasm for the universality of the logistic model of 

population growth waned as many of the weaknesses of Pearl’s experimental research 

became known (Sang, 1949).  Coincident with these developments, although perhaps not 

because of them, the level of research with Drosophila in population ecology waned in the 

1940’s and 50’s.  However, starting in the 1950s and continuing on into the 1980s, Drosophila 

was again used extensively to study intra- and inter-specific competition and population 

dynamics (Moore, 1952 a,b; Miller, 1964 a,b; Ayala, 1966, 1969, 1971; Barker, 1974; Ayala et 

al., 1973; Gilpin and Ayala, 1973; Arthur, 1980, 1986). In the past decade or so, the use of 

Drosophila in population ecology research has again come down to some degree, although it is 

still a very useful model system for such work, as we shall argue. Moreover, Drosophila has 

also been used extensively in empirical investigations into the evolution and coevolution of 

interspecific competitors, underscoring its role in experimental work at the interface of 

population ecology and evolutionary biology (Moore, 1952 b; Futuyma, 1970; Hedrick, 1972; 

Sulzbach and Emlen, 1979; Joshi and Thompson, 1995, 1996). 

In addition to specific work on population dynamics of Drosophila cultures, much has 

been learned about the important basic biology and laboratory ecology of Drosophila since 
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1920 (reviewed in Mueller, 1985, 1997). For instance, Chiang and Hodson (1950) established 

much of the basic laboratory ecology of Drosophila.  In a monumental study, Bakker (1961) 

carefully determined the factors affecting competition of Drosophila larvae in food limited 

environments.  These and many other studies have paved the way for a sophisticated and 

detailed understanding of the effects of food, density, and competitors on important life 

history traits in Drosophila. that, in part, make it such a useful system for empirical research 

in population ecology  

In this chapter we review some of this important biological information and discuss how 

it can be used to build a detailed model of population dynamics that can then be used to 

make predictions about both population stability and life-history evolution.  In some cases 

these predictions may be tested empirically. The evolution of population growth rates in 

Drosophila (Mueller and Ayala, 1981a) opens the interesting possibility that the stability of 

populations may also evolve, and we will review experiments aimed at testing this idea. 

LIFE-HISTORY OF DROSOPHILA IN THE LABORATORY 

Drosophila has two active life stages, a non-reproductive larval stage and a reproductive 

stage as a flying adult.  In addition, there is a sedentary pupal stage during which 

metamorphosis takes place.  From the standpoint of population dynamics, the larval stage is 

important for several reasons.  First, of course, an individual must survive the larval stage in 

order to reproduce.  Secondly, both the survival and the fertility of adults is affected by 

levels of crowding and nutrition that they experienced as larvae. Below we summarize these 

effects by separately considering larvae and adults. 

Larvae 

If larvae are crowded into a fixed volume with a constant level of resource, survival and 

adult size decrease with increasing density (Chiang and Hodson, 1950).  These effects can be 
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reproduced by keeping the number of larvae constant but decreasing the amount of food 

available for the developing larvae (Bakker, 1961) figure 6.1.  One interesting phenomenon, 

seen in figure 1 and many other studies, is that survival increases rapidly with increasing food 

level to its maximum value while adult size increases more slowly and reaches its maximum 

value at food levels far above that needed for maximum survival. This effect is believed to be 

a reflection of the fact a larva must reach a critical minimum size before it can successfully 

complete metamorphosis, even though larvae typically pupate at sizes much larger than this 

minimum (Bakker, 1961).  As larvae continue to feed beyond this critical point their 

additional growth will lead to the formation of larger adults, which, in turn, is likely to 

translate into increased female fecundity in the adult stage. 

As larvae are crowded, reduced food levels are not the only stress encountered. 

Burrowing larvae will inevitably ingest their own nitrogenous metabolic waste products, 

largely ammonia, which increases rapidly in crowded larval cultures (Borash et al., 1998).  

These ingested wastes have toxic effects that reduce survival (Shiotsugu et al., 1997; Borash 

et al., 1998). Thus, the primary stresses placed on a Drosophila larva in a crowded culture are 

shortage of food and accumulation of nitrogenous waste, both of which tend to intensify 

with time. 
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FIGURE 6.1. Female thorax length (open circles) and viability (black circles, males and females) 
of the four K-populations described in Mueller et al. (1989) as a function of food level.  Thorax 
length is highly correlated with adult mass and is used here as a general measure of adult size.  
The bars are standard errors. 

Bakker (1961) demonstrated that Drosophila larvae compete for limited food through a 

scramble type mechanism, and proposed that larvae may exhibit genetically based differences 

in rates of food consumption and that the fastest feeders would be the superior competitors.  

This notion was supported by observing that larvae demonstrated to be slow feeders could 

become successful competitors if given a head start in feeding (Bakker, 1961). Competitive 

ability can be assessed by examining egg-to-adult survival of a particular genotype in the 

presence of a competitor vs. its survival in the absence of the competitor (Nunney, 1983, 

Mueller, 1988b). Burnet et al. (1977) showed that Drosophila larvae whose feeding rates had 

been increased by artificial selection were also better competitors. The relationship between 
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feeding rates and competitive ability was further strengthened by the observation that larvae 

populations maintained at high densities, whose competitive ability had increased due to 

density-dependent natural selection (Mueller, 1988a) had also undergone an increase in 

feeding rates (Joshi and Mueller, 1988) figure 6.2. 

In addition to feeding rate, measured as the number of cephalopharyngeal sclerite 

retractions per unit time, larvae also exhibit variation in their foraging behavior in two 

dimensions.  Sokolowski (1980) has studied this behavior by quantifying the distance 
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FIGURE 6.2.  Competitive ability vs. larval feeding rates in four K-populations (open circles) and four 
r-populations (solid circles).  The bars are 95% confidence intervals. Feeding rates (Joshi and 
Mueller, 1988) are quantified by counting the number of times the mouth parts of a larva move back 
and forth in one minute.  Competitive ability (Mueller, 1988a) was measured by assessing the relative 
increase or decrease in viability of the wild stock (either the r- or K-populations) in the presence of 
larvae homozygous for the white allele. 
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traveled by a larva while feeding on a flat surface.  There appears to be a natural 

polymorphism for foraging path length, controlled by a single locus, for (Sokolowski, 1980, 

de Belle et al., 1989). Sokolowski has called the phenotypes who travel little while foraging, 

“sitters”, and those that travel greater distances, “rovers”. Mutants at the for locus map to the 

locus, dg2, which encodes a cyclic guanosine monophosphate-dependent protein kinase 

(Osborne et al., 1997).  This protein has previously been shown to be involved in a variety of 

nervous system functions (Osborne et al., 1997).  Recently, Sokolowski (Sokolowski et al., 

1997) has shown that the alleles at the for locus respond to density-dependent natural 

selection, with the rover type becoming common in populations which have evolved at high 

larval densities and the sitter type predominating in populations kept at low larval densities.  

However, the precise manner in which foraging path behavior affects fitness components 

has not been determined. 

After Drosophila larvae have completed their growth they search for a place to form their 

pupal case and complete development, thus bringing the feeding phase of pre-adult life to an 

end.  In the laboratory, pupae generally form on the surface of the food or on the sides of 

the vials at some distance from the food surface (this perpendicular distance is typically 

called pupation height).  The survival of a pupa may be affected by it’s location (Joshi and 

Mueller, 1993) figure 6.3.  Under crowded larval conditions the food becomes a source of 

mortality for pupae on its surface. Large numbers of feeding larvae render the food a soft, 

semisolid morass and pupae can get trampled by moving larvae and drown as they slowly 

sink into the food. It also appears that mortality is high for pupae located a great distance 

from the food surface (fig. 6.3).  This leads to a classic form of stabilizing selection in the K-

populations (fig. 6.3), whereas, in the r-populations selection is predicted to be largely 

directional since very few pupae travel to the highest positions where viability is low (fig. 
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6.3). The shape of the selection function is somewhat irregular and certainly not Gaussian in 

shape. 

Adults 
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If we postpone consideration of age-structure for the time-being, there are three 

important remaining determinants of female fecundity: adult size, adult density and adult 
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FIGURE 6.3.  The distribution of pupal heights at high larval density in two populations of D. 
melanogaster (Joshi and Mueller, 1993). The fraction of pupae which survive is also shown.  In both 
populations viability is very low on the surface and at high pupal heights, but nearly 100% of all larvae 
survive at intermediate heights. The K-populations are less likely to pupate on the surface and tend 
to pupate at greater distances from the surface of the food than the r-populations. 
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nutrition. In general, small females lay fewer eggs than larger females of the same age (fig. 

6.4). Size may account for roughly a three fold difference in fecundity between the very 

smallest females (with a thorax length of about 0.6 mm) and the very largest females (1.1 

mm). Since adult Drosophila do not get larger size differences, which are relicts of larval 

crowding, represent permanent limitations on maximum female fecundity. 

The factors other than size which affect female fecundity may be reversed and may vary 

over time and space. As adult Drosophila are crowded there is a decline in female fecundity 

but this is most pronounced in flies which have been maintained as adults on low levels of 

nutrition (fig. 6.5). The combined effects of adult nutrition and adult crowding may cause a 

four-fold difference in daily female fecundity (fig. 6.5). The relationship between female 

fecundity and adult density has an important impact on Drosophila population dynamics and 

will be explored more fully in the next section that develops a model of population 

dynamics. 

In cultures where adults are not segregated from growing larvae, larval density can also 

have indirect effects on female fecundity through increased levels of nitrogenous wastes 

(Aiken and Gibo, 1979; Joshi et al., 1996; 1998). There are also direct effects of presence of 

larvae on fecundity. Food medium with larvae at low densities is preferred as a substrate for 

oviposition by female Drosophila, compared to food without any larvae (Del Solar and 

Palomino, 1966), whereas high larval densities inhibit fecundity (Chiang and Hodson, 1950).  
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A MODEL OF POPULATION DYNAMICS 

We review the model described by Mueller (1988b) which utilizes much of the empirical 

information summarized in figures 6.1-6.5. This model uses egg numbers, nt, as the natural 

census stage as discussed in chapter 2. Viability from egg to adult is then assumed to be 

composed of two parts. A fraction V of all eggs are assumed to die due to density 

independent causes. The remaining larvae compete for food resources (which total B units) 

and survival is density-dependent and given by the function W(Vnt). It is assumed that food 

is consumed in these environments until it is exhausted, at that point the amount of food 
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FIGURE 6.4. Early female fecundity as a function of female size and age. These data are the 
averages of eight populations described in Mueller (1987). 
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consumed by individual larvae differs and follows a normal distribution (see fig. 6.6, lower 

figure) with a mean of B/(Vnt) and a standard deviation of B/(Vnt). The adult population is 

drawn from those larvae that have consumed more than the critical minimum (m) amount of 

food needed to successfully go through pupation. In figure 6.6 these survivors represent the 

shaded portion of the curve and the area of this shaded portion is the viability, 

(6.1)  W Vn y dyt
x

( ) ( )


 , 

where (y) is the standard normal density function and x = (mVntB-1-1)-1. 
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FIGURE 6.5. The fecundity of large, young females as a function of adult nutrition and adult 
density. The bars are 95% confidence intervals. The points are the averages of six populations 
described in Mueller and Huynh (1994). Fecundity was measured at the six densities shown on 
the x-axis. Fecundity at high and low food levels measured at the same density are slightly 
displaced to ease the visual presentations of these results. 
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Suppose in the larval population there are several types (these may be genotypes or 

different sexes) that differ in their relative competitive ability. Let the competitive ability of 

the ith type be, i. For instance, in Mueller (1988b) there were three types corresponding to 

the three possible genotypes at a bi-allelic locus. If we know the frequency of each type then 

we can also define the average competitive ability. Let this average be  . Then, at the time 

all the food in the environment has been consumed, the ith type will have consumed 

  i tB Vn
1

. If the competitive ability of the ith type is greater than the population average, 

then these types will consume more food than average and thus will have a greater chance of 

surviving and will, on average, be larger than the rest of the population. It is clear from this 

formulation that competition is a frequency-dependent process in which benefits to superior 

competitors only accrue when inferior competitors are present. 
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Since the surviving larvae have consumed different amounts of food, some will be large 

and some will be small, thereby giving rise to adults of varying sizes (fig. 6.1). From the 

distribution in equation (6.1) the average size and hence fecundity, of the surviving females 

can be computed from the relationships illustrated in figure 6.1. Thus, the mean fecundity of 

Food Consumed (mg yeast)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
ro

ba
bi

lit
y 

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

Fecundity (eggs/day)

20 30 40 50 60

P
ro

ba
bi

lit
y 

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

Larvae which have eaten this
 much food give rise to adults
 whose fecundity is indicated

 on the top figure

 

FIGURE 6.6. The Drosophila population dynamic model. Only larvae which have consumed more 
than the minimum required (0.47 mg in the lower figure) survive. The viability of larvae is 
indicated by the shaded region in the lower figure. The fecundity of the adult females is 
determined by how much food they eat in excess of the minimum requirement and hence their 
adult size (see fig. 1). The distribution of female fecundity is determined by the distribution of 
larvae which eat more food than the minimum required.  
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surviving females is a density dependent function given by the area of the top curve in figure 

6.6 or, 

(6.2)    F Vn W Vn f s B( y V n y dyt t t
x

( ) ( ) ) ( )   


1 1 11  . 

f s(~)  is the function which relates adult size ( ~s ) to female fecundity and for the results in 

figure 6 and elsewhere it is assumed to be a linear function on a log-log scale, 

(6.3)   f s c c s(~) exp ln(~) 0 1 , 

where the ci are empirically determined constants. The size function s y(~)  should increase 

exponentially with increasing food consumption ( ~y ) to some maximum value. The function 

used here will be, 

(6.4)    s y a a a y m(~) exp (~ )    0 1 21 , 

where the ai are also empirically determined constants. However, a0 + a1 should be the 

maximum sized female and a0 should be the minimum sized female.  

The fecundity predicted from F(.) represents the maximum possible given the size of the 

female. The number of eggs that females actually lay may be further modulated by levels of 

food that are provided to the adults and the density of adults as suggested by figure 6.5. The 

amount of food consumed by adults will clearly vary continuously in most populations. 

Currently, there are no data which can be used to determine the transition that will be taken 

from one curve in figure 6.5 to the other as food levels vary. For the models which follow, 

we make the assumption that adult food levels are constant (either very low or at an excess). 

This assumption is forced on us by our lack of complete information. Ultimately, in our 

experimental research this assumption can be accommodated since we can easily control the 

food levels provided to adults in a manner consistent with this assumption. 
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The effects of adult density on female fecundity will be modeled by a hyperbolic 

function, 

(6.5)  G N
b

b Nt
t

( ) 


0

11
, 

where the adult population size, Nt, is given by W n V Vnt t( ) , b0 is the maximum fecundity 

reached at low density and b1 measures the sensitivity of fecundity to adult crowding. This 

sensitivity to adult crowding is ultimately crucial for determining the stability of Drosophila 

populations. Populations that show little sensitivity will tend to lay large number of eggs 

even when populations are crowded, a behavior that tends to destabilize the dynamics of the 

population. As we can see in figure 6.5, when adults are provided with excess food their 

sensitivity to adult crowding is reduced substantially. 

We can now combine all the components of the life cycle we have reviewed to produce a 

recursion in egg numbers, 

(6.6)  n G N F Vn W Vn Vnt t t t t 1
1
2 ( ) ( ) ( ) . 

The factor of one-half in equation (6.6) is to account for the fact that only half the adult 

population lays eggs. The strength of this model is that the individual components have a 

great deal of empirical support. Indeed many of the parameters of the components parts of 

equation (6.6) can be estimated directly from these experiments (e.g. like those in figs. 6.1, 

6.4 and 6.5) (Mueller et al., 1991). This strength can then be exploited to explore those parts 

of the life cycle which are most important to determining population stability (see next 

section). However, the liability of this type of model is the large number of parameters it 

contains. In addition the interaction of some of these components has not been studied in 

sufficient detail. For example, as already discussed the way in which G(Nt) varies with food 

levels is not known precisely. Moreover, the shape of the hyperbolic functions describing 
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G(Nt) have not been examined for a range of adult sizes. Equation (6.6) implicitly assumes 

that the effects of adult size and adult food levels act independently on final female 

fecundity. This same problem was noted with the model developed by Rodriquez in chapter 

(3).  

The natural question that arises is what uses are there for a model like (6.6)? The model 

can be used as a means of studying how life histories may evolve. Since the model includes 

details of the specific life history of Drosophila, its predictions can be directly evaluated. 

Mueller (1988b) concluded that density-dependent selection in Drosophila will affect 

competitive ability which is directly related to larval feeding rates. This prediction has been 

tested and the model of viability (1) was used to determine the appropriate experimental 

protocols for measuring competitive ability (Mueller, 1988a). As we will explain in more 

detail in the next section the model also provides a qualitative prediction about the types of 

environments most likely to result in stable population dynamics of Drosophila. Again these 

qualitative predictions can be easily tested. However, it is unlikely that even with the 

parameter estimates obtained from the data previously presented, numerically accurate 

predictions of population numbers over time can be obtained from equation 6.6.  

While some progress can be made determining the analytic conditions for stability of an 

equilibrium to equation (6.6) (Mueller, 1988b) these conditions are difficult to interpret. The 

major determinants of stability are the sensitivity of female fecundity to adult crowding 

(parameter b1) and the levels of larval food (B). Decreasing b1 or decreasing K (fig. 6.7) or 

both will tend to move a stable population to cycles and then to chaos. When b1 is decreased 

females tend to lay many eggs, even in crowded environments. Thus, the populations tend to 

overshoot their equilibrium points. The amount of food provided to larvae can be decreased 

without decreasing adult resources. Thus, when larval food levels are decreased it becomes 
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possible for even moderate sized adult populations to over produce eggs for the meager 

amount of food available. This again results in the population overshooting their equilibria 

and failing to settle to a stable point. 
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FIGURE 6.7. Population dynamic prediction from the Drosophila model (equation 6.6). The 
middle panel shows a stable equilibrium point. As the sensitivity to adult crowding decreases 
(decreasing b1) the population moves from a stable point, to a stable cycle to aperiodic behavior 
(top panels). As the larval resources decrease (decreasing K) the population also becomes 
progressively less stable (bottom panels). The parameter values for the middle figure were: B 
(0.06 g), V (0.75),  (0.35 g), m (0.0003 g), a0 (0.5 mm), a1 (0.623 mm), a2 (1700 g-1), c0 (6.041 
ln(eggs)), c1 (2.644 ln(eggs)mm-1), b0 (1.06), b1 (0.3). The other figures differed as follows: top (b1 
= 0.03), 2nd from top (b1 = 0.1), 2nd from bottom (K = 0.03), bottom (B = 0.01). 
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STABILITY OF LARGE LABORATORY POPULATIONS 

The basic qualitative prediction is that the most stable populations occur in 

environments with high levels of larval food (high B) and low levels of adult food (high b1). 

The opposite set of conditions (low B and low b1) should produce the least stable 

populations. These conditions can easily be experimentally imposed on laboratory 

populations of Drosophila.. Mueller and Huynh (1994) created three different environments 

that differed in relative amounts of food provided to larvae and adults. In one populations, 

called HH, the larvae and adults received high amounts of food (fig. 6.8, middle graph). A 

second population, called HL, was maintained as the HH populations except the amount of 

food provided to adults was low (fig. 6.8, top graph), similar to the low food treatment in 

figure 6.5. The third population, called LH, was maintained as the HH except the larvae 

received half as much food (fig. 6.8, lower graph). The combination of low larval food and 

high adult food did produce a significant change in population stability, consistent with the 

model predictions. 

To quantify the stability of these populations the first order model, 

(6.7)  ln
N

N
a a N a Nt

t
t t







   1

1 2 3
2  , 

was fit to each population and the best model according to PRESS was used to estimate the 

stability determining eigenvalue. These populations would not be expected to strictly follow 

a first order model. However, since there are so few generations of data, fitting higher order 

models is hard to justify. The average of the five eigenvalues is shown in figure 6.8.  
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FIGURE 6.8. The adult population size in 15 different populations of D. melanogaster (from 
Mueller and Huynh, 1994). The middle graph shows the results for populations kept on high 
larval and high adult food levels. The populations displayed in the top figure have reduced adult 
food levels (i.e. increased b1) relative to the populations in the middle figure. The populations in 
the lower figure have lower larval food levels (decreased B) than the populations in the middle 
figure and hence decreased stability. The average of the five eigenvalues () is given for each 
set of populations. The high level of adult food was simply an excess of live yeast. The low level 
of larval food was determined by preliminary test that examined several different levels. The 
theory is not sufficiently precise to predict the low food level accurately. 
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This analysis suggests that the LH environment is the least conducive to stable population 

growth, in accord with the theoretical predictions. Using the least squares estimates for (6.7) 

for the three populations with eigenvalues less than -1 (LH1, LH3, and LH4) we can observe 

what equilibrium the population converges to. In each case iteration of (6.7) produced an 

apparent stable two-point cycle (LH1:(154, 761); LH3:(198, 811); LH4:(453, 827)). The 

estimated eigenvalue at these two point equilibria were also less than one in absolute value in 

each case (LH1: 0.49; LH3: 0.10; LH4: 0.79). 

The results from the analysis by the RSM models are supported by an examination of the 

autocorrelation function (fig. 6.9). These results also suggest that the LH populations are at 

an even point cycle. 
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STABILITY OF SMALL LABORATORY POPULATIONS 

Although the importance of demographic stochasticity in population ecology has been 
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FIGURE 6.9. The autocorrelation functions for the populations shown in figure 6.8. Each 
autocorrelation is the mean of the five replicate populations. The confidence intervals are also 
based on these five replicates. 
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appreciated by theoreticians for at least several decades (e.g. MacArthur & Wilson 1967; 

Richter-Dyn & Goel 1972; Leigh 1981; Gilpin 1992), most empirical work on population 

dynamics has been structured around deterministic models, albeit models of increasing 

complexity, taking into account specific details of the field or laboratory ecology of the 

species in question. Empirical results have, by and large, shown reasonable agreement with 

predictions of the deterministic models, but the data in such studies have typically been 

collected from populations large enough to render the effects of demographic stochasticity 

on their dynamics unimportant. At the same time, the dynamics of small populations has 

been receiving considerable attention in ecology in recent years, especially because of the 

heightened awareness of the need for efficient conservation of biodiversity, much of which 

is often represented by increasingly smaller populations in an ever more fragmented 

landscape (Soulé & Simberloff 1986; Lande 1988; Kareiva 1990; Gilpin & Hanski 1991, 

1997). Much of the theory developed for fragmented populations and metapopulations is 

also based upon simple deterministic models of local sub-population dynamics. Therefore, it 

is of considerable interest to assess whether deterministic models of population growth and 

dynamics can adequately capture at least the essential features of the dynamic behavior of 

very small populations, or whether we need to explicitly incorporate demographic 

stochasticity in an appropriate way into our models of population dynamics in order to make 

them applicable to smaller populations. 

A recent study of the dynamics of eight small populations of D. melanogaster, maintained 

in single 8-dram vials with average size of 75 adults (s.d. = 57.2) (Sheeba and Joshi, 1998), 

suggested that the predictions of the Drosophila model of Mueller (1988b) regarding the 

effects of LH and HL food regimes hold good even for extremely small populations in 

which demographic stochasticity, acting through sex-ratio, birth rate and death rate 
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fluctuations, may be expected to be of considerable magnitude. In this study, the linear 

logistic, exponential logistic, and hyperbolic models were fit to 11 generations of data on 

adult numbers from four populations subjected to an LH food regime, and four to an HL 

food regime. Both types of populations exhibited fairly large fluctuations in adult numbers, 

although the coefficient of variation of population size in the LH populations was 

significantly greater than that seen in the HL populations.  

TABLE 6.1. Estimates of the parameter r of the exponential logistic model for eight small 
populations of D. melanogaster, maintained in single 8-dram vials, subjected to HL and LH food 
regimes (data from Sheeba and Joshi, 1998). 

Replicate population HL food regime LH food regime 

1 1.801 3.076 

2 1.156 3.002 

3 1.838 3.438 

4 1.702 2.294 

mean (± 95% c.i.) 1.624 (± 0.505) 2.953 (± 0.761) 

 

Of the three models fit to the data, only the exponential logistic model gave reasonable 

fits with the mean R2 value for the LH populations (0.65) being significantly greater than that 

of the HL populations (0.29). Estimates of the intrinsic rate of increase r (table 6.1), the 

stability determining parameter of the exponential logistic model, were consistent with those 

obtained for larger Drosophila populations subjected to LH and HL food regimes (see chapter 

2), and also with the qualitative predictions from the Drosophila model (Mueller, 1988b). In 

the HL food regime, all populations exhibited 1 < r < 2, a condition in which the 

exponential model predicts an oscillatory approach to a stable equilibrium. In the LH food 

regime, on the other hand, r in three populations exceeded 3.0, a value for which chaos is 
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predicted, while one population showed r = 2.294, in which case stable 2-cycles are 

predicted.  

A similar, but more detailed study attempted to examine the impact of stochastic 

variation in sex-ratio on the goodness of fit of the exponential model to data on small 

populations of D. melanogaster subjected to either HL or LH food regimes (A. Joshi, V. 

Sheeba and M. Rajamani, unpubl. ms.). In this study, sets of 8 populations each were derived 

from each of four large (N ~ 2000 adults) and outbreeding ancestral laboratory populations. 

Populations were initiated with 8 males and 8 females allowed to lay eggs for 24 hrs in an 8 

dram vial. Four of the populations from each ancestral population were subjected to an LH 

regime (3 mL food per vial for larvae, yeast supplement for adults), and four to an HL 

regime (10 mL food for larvae, no yeast for adults). A total of 16 HL and 16 LH populations 

was, thus, set up. 

Each generation, the number of adult males and females present in each population (vial) 

was counted on the 21st day after egg-lay. The flies were then placed into a fresh vial with the 

appropriate amount of food and allowed to lay eggs for exactly 24 hours, after which the 

adults were discarded. The larvae developed and pupated in these vials, and from day 8 

through day 18 after egg-lay, any eclosing flies in these vials were collected daily into fresh 

vials with ~ 5 mL food in them. Eclosing flies were added daily into these adult collection 

vials and every other day all adults collected from a specific population untill that time were 

shifted to a fresh vial containing ~ 5 mL food. On the 18th day after egg-lay, the egg vials 

were discarded and all eclosed adults of each population transferred to fresh vials containing 

~ 5 mL of food with or without a supplement of live yeast paste added to the wall of the 

vial, depending upon the food regime. Census data on the number of males and females 

present in each population during egg laying were collected for 11 generations. Once again, 
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both LH and HL populations showed fairly large fluctuations in numbers (fig. 6.10), but the 

mean (± 95% c.i.) coefficient of variation of population size in the LH populations (0.91 ± 

0.04) was significantly greater than that seen in the HL populations (0.62 ± 0.04). 
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FIGURE 6.10. Time series data on number of breeding adults in 16 LH and 16 HL small 
populations of D. melanogaster maintained in single 8 dram vials. Dotted lines represent the 
mean equilibrium number of adults (carrying capacity, K in the exponential logistic model), 
averaged across all populations in each food regime. Mean number of adults (± s.d.) was 47.4 ± 
42.1 in LH populations, and 99.6 ± 59.6 in HL populations (Data from A. Joshi, V. Sheeba and M. 
Rajamani, unpubl. ms.). 

Data on the number of adults in each population over 11 generations were subjected to 

time series analysis in order to see if the prediction of the Drosophila model regarding 2-cycles 

in the LH regime held true in the face of demographic stochasticity. Linear trends in the 

individual time series were removed, and autocorrelations estimated between the size of each 

population at different time lags from 1 to 6 generations. Amplitude spectra for each 

population were also computed, using Fourier analyses on data from generations 3 through 

10 for each population. The results of these analyses bear out the prediction of the Drosophila 

model (fig. 6.11). The LH, but not HL, populations exhibit the alternating pattern of 

negative and positive autocorrelations with increasing lag that is characteristic of 2-cycles, as 
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well as a distinct peak in the amplitude spectrum corresponding to a frequency of 0.5 

(periodicity of 2 generations).  
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FIGURE 6.11. Results of time series analyses on the data shown in figure 6.10. Plotted values of 
the autocorrelations and fractional contributions of different frequencies are averaged across the 
16 replicate populations within each food regime (LH or HL), and the error bars represent 95% 
confidence intervals about those means (Data from A. Joshi, V. Sheeba and M. Rajamani, 
unpubl. ms.). 

The sex-ratio in the LH populations exhibited large fluctuations from generation to 

generation with an average coefficient of variation of the fraction of females of 0.24 (95% 

c.i. = ± 0.04). Although there was no systematic departure from a 1:1 sex-ratio (fig. 12), the 

fractions of females observed in the LH populations ranged from 0.2 through 1.0. The HL 

populations, on the other hand, showed a consistently female-biased sex-ratio (fig. 6.12): the 

mean fraction of females observed was 0.57 (95% c.i. = ± 0.2). However, sex-ratio in the 

HL populations was significantly more stable than in the LH populations, varying between 

extremes of 0.31 and 0.79, with an average coefficient of variation of the fraction of females 

of 0.16 (95% c.i. = ± 0.02).  
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FIGURE 6.12. Sex-ratio variation in small HL and LH populations. Data points are mean fraction 
of females, averaged across 16 replicates of each food regime, and the error bars are 95% 
confidence intervals about those means (Data from A. Joshi, V. Sheeba and M. Rajamani, 
unpubl. ms.). 

Fitting of the exponential model to the data from the LH and HL populations gave 

results similar to those seen by Sheeba and Joshi (1998). In order to explore the impact of 

sex-ratio variation on the fluctuations in adult numbers, we fitted the exponential model to 

the data in two ways, either using adult numbers alone (Nt+1 = Nt exp [ r ( K - Nt ) / K ]), or 

using twice the number of females instead of the total number of adults (Nt+1 = 2Nft exp [ r ( 

K - (2Nft)) / K ]; Nft  = number of females at generation t). The goodness of fit of the 

exponential model to the data for both cases, using Nt and 2Nft, was assessed through the 

coefficient of determination (R2), as well as by looking at the mean absolute value of the 

deviations between observed data and one-step forecasts (E[ N Nt t1 ]), expressed as a 

fraction of the mean population size. This measure, henceforth referred to as the coefficient 
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of deviation, D, was calculated as 
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of generations, and xi = E[ N Ni i1 ] – Ni+1. 

It is clear from the mean estimated values of r, K, R2 and D, obtained by fitting the 

exponential model to data on total numbers, and twice the number of females, that the mode 

of fitting did not have a major impact on the estimates of these various parameters and 

measures of fit (table 6.2).  

TABLE 6.2. Mean (± 95% c.i.) estimates of the parameters r (intrinsic rate of increase) and K 
(carrying capacity) of the exponential logistic model, and of two measures of goodness of fit 
(coefficients of determination (R2) and deviation (D), respectively), for small populations of D. 
melanogaster, maintained in single 8-dram vials, subjected to HL and LH food regimes. 
Estimates were made in two ways: by using either adult numbers alone, or using twice the 
number of females instead of the total number of adults (data from A. Joshi, V. Sheeba and M. 
Rajamani, unpubl. ms.). 

 Estimated from Nt Estimated from 2Nft 

 LH regime HL regime LH regime HL regime 

r 2.937 (± 0.233) 1.583 (± 0.218) 2.898 (± 0.211) 1.682 (± 0.112) 

K 40.3 (± 3.82) 114.9 (± 4.18) 40.8 (± 2.73) 126.6 (± 5.36) 

R2 0.714 (± 0.097) 0.283 (± 0.113) 0.726 (± 0.105) 0.398 (± 0.107) 

D 0.309 (± 0.070) 0.352 (± 0.034) 0.315 (± 0.063) 0.325 (± 0.037) 

 

Analyses of variance (ANOVAs) confirmed that food regime (LH or HL) had a significant 

effect on estimates of r and K, and on R2, and the pattern of these results was not affected by 

how the model was fitted to data (using Nt or 2Nft,) (table 6.3). The pattern of ANOVA 

results for D was, however, different. When model fitting was done using Nt, the effects of 

block (based on ancestry from a specific population) and the block  food regime interaction 

were significant. When model fitting was done using 2Nft, however, none of the ANOVA 
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effects was significant (table 6.3). The independence of D from food regime is of some 

interest, because R2 as a measure of goodness of fit is flawed in this context because it scales 

with the parameter r. In the LH populations, where much of the variation in population size 

is deterministically driven, R2 is relatively high compared to the HL populations where, 

presumably, a greater proportion of the variation in population size is due to random 

fluctuations. The measure D, on the other hand, reflects the average magnitude of deviations 

from the model’s predictions as a fraction of the mean population size. 

TABLE 6.3. Summary of results of analyses of variance on r, K, R2 and D estimated for the 32 LH 
and HL populations. In the body of the table the F-statistic (F) of each test and its significance 
level (P) are given. Separate analyses were done for estimations based on fitting the exponential 
model to data using Nt and 2Nft. Food regime (LH or HL) was treated as a fixed factor crossed 
with random blocks based on ancestry. Degrees of freedom (df num, df denom) for testing food 
regime effects are 1,3; those for the random effects and interactions are 3,24. (data from A. 
Joshi, V. Sheeba and M. Rajamani, unpubl. ms.). 

 r K R2 D 

Effect 
model fitted 

using Nt 

F P F P F P F P 

Block 0.384 0.765 0.005 0.999 1.077 0.378 3.909 0.021

Food Regime 54.664 0.005 738.093 0.0001 19.416 0.022 0.565 0.507

Block  Food 

Regime 

1.475 0.247 0.955 0.430 1.977 0.144 4.987 0.008

Effect 
model fitted 
using 2Nft 

F P F P F P F P 

Block 1.134 0.355 0.299 0.826 1.193 0.333 1.292 0.300

Food Regime 117.520 0.0017 676.389 0.0001 45.938 0.0066 0.140 0.733

Block  Food 

Regime 

1.020 0.401 1.312 0.293 0.447 0.722 1.055 0.387

The dependence of K, R2 and D on r is examined more finely in figure 6.13. In LH 
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populations, regardless of whether the exponential model was fit using Nt or 2Nft,, r and K 

were negatively correlated (P < 0.01). In the HL populations, r and R2 were positively 

correlated (P < 0.001 when fit used Nt ; P < 0.05 when fit used 2Nft,). All other correlations 

were not significant at the 0.05 level. Thus, the scaling of K and R2 with r appeared to be 

subject to some limitations based on the range of r values examined; why exactly this is so is 

not clear. 
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FIGURE 6.13. Correlation between the intrinsic rate of increase (r) and the carrying capacity (K), 
and the two measures of goodness of fit (R2, D). Solid lines are least-squares linear regressions 
through data from each food regimefitting procedure combination (Data from A. Joshi, V. 
Sheeba and M. Rajamani, unpubl. ms.). 

Overall, the results from this very preliminary study of the dynamics of small 

populations suggest that predictions of the Drosophila model (Mueller, 1988b) regarding the 

dynamic behavior of populations subjected to LH and HL food regimes are borne out even 

in extremely small populations. It is also clear that the extremely simple exponential logistic 

model provides reasonable fits to the data (fig. 6.14).  
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FIGURE 6.14. Data from one representative population each from the LH and HL food regimes 
showing the observed time series of adult numbers (filled circles connected with straight lines), 
along with the one-step forecasts based on two ways of fitting the exponential model to the data: 

(E[ N Nt t1 ]) (open triangles), and  (E[ N Nft t1 2 ]) (open squares) (Data from A. Joshi, V. 

Sheeba and M. Rajamani, unpubl. ms.). 

More interestingly, the goodness of fit of this model to these data seems to be unaffected by 

whether or not variation in sex-ratio was corrected for (table 6.2, figs. 6.13, 6.14), even 

though sex-ratio in the HL populations was consistently female biased (fig. 6.12). Indeed, the 

number of adults in generation t (Nt), the absolute deviation of the fraction of females at 

generation t from 0.5, and the absolute deviation of observed Nt+1 from the one-step 

forecasts (E[ N Nt t1 ]) are mutually uncorrelated (data not shown), further strengthening the 

conclusion that sex-ratio fluctuations are not a major contributor to stochasticity in the 

dynamics of these small populations. Most likely, then, the bulk of the stochasticity is due to 

variation from generation to generation in birth and death rates, partly due to sampling from 

a genetically variable population, and partly due to uncontrollable environmental changes. 

The practical significance of these results is that (a) we can be confident of manipulating 

even very small Drosophila populations through the food regime so as to obtain populations 
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with relatively stable or unstable dynamics, and (b) we can ignore variation in sex-ratio while 

studying gross features of the dynamics of such populations. One important implication of 

this is that we can use laboratory systems of Drosophila populations to test some of the 

predictions from theories of metapopulation dynamics and stability discussed in Chapter 1, 

and we will present results from one such study later in this chapter. 

ASSESSMENT OF THE DROSOPHILA MODEL 

There are two different types of observations that can be used to assess the Drosophila 

model. (1) The quantities that are used to estimate the model parameters can also be used to 

evaluate the model in a standard goodness-of-fit type of analysis. (2) The model also yields 

predictions about population level behavior that is independent of the estimation process. If 

these predictions were accurate this would constitute strong support for the underlying 

structure of the model. Under the first category of test we have examined the model 

predictions of egg-to-adult viability and average adult size. The model does an admirable job 

predicting these quantities (Nunney, 1983, Mueller et al., 1991). In the case of adult size the 

model parameters were estimated with one set of experimental data and the predictions were 

made for an independent set of observations (Mueller et al., 1991).  

The second, stronger set of tests involved examination of (i) the variance in female size, 

and (ii) the stability of the population in a LH environment. We have already reviewed the 

results of population dynamics in the LH environment for both large and small populations. 

The ability of the Drosophila model to correctly predict the qualitative outcome of these 

experiments is perhaps the most impressive achievement of the Drosophila model. Mueller et 

al, (1991) showed that the variance in female size is correctly predicted by the Drosophila 

model at low food levels but is consistently overestimated at high food levels. In all 

likelihood this is due to the assumption that food consumption is normally distributed when 
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in fact there is probably an upper limit to how much food a larva will consume. At high food 

level most larvae probably consume close to the upper limit and thus the variance in size 

would be expected to decrease. 

On the whole the Drosophila model yields accurate predictions about many important life 

history events and population dynamic phenomenon. It could be improved by developing a 

more realistic description of larval food consumption and determining the extent to which 

there are interactions between larval and adult life histories, e.g. fecundity of different size 

females at different adult densities. 

STABILITY IN LABORATORY METAPOPULATIONS 

We have seen in Chapter 1 that various models of metapopulation dynamics differ in 

their predictions regarding the effect of migration on local (sub-population) and global 

(metapopulation) stability. In a metapopulation in which individual sub-populations exhibit 

relatively large fluctuations in numbers, it is possible that migration could be destabilizing at 

the global level by acting as a synchronizing force, tending to bring the various sub-

populations in phase with each other. It is also possible, however, that migration, especially if 

density-dependent, could act as a stabilizing force at the local level by damping out 

fluctuations in individual sub-populations. In this section we describe results from a study in 

which laboratory metapopulations of Drosophila were used to investigate the effect of density-

dependent migration on local and global dynamics under differing levels of stability in the 

local dynamics (A. Joshi and V. Sheeba, unpubl. ms.). 

In this study, four metapopulations were initiated from each of four large (N ~ 2000 

adults) and outbreeding ancestral laboratory populations. Each metapopulation consisted of 

eight sub-populations maintained in a single 8-dram vial. Each of the four metapopulations 
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derived from a specific ancestor was subjected to a particular combination of stability and 

migration treatments:  

 (i) stabilizing HL type food regime, without migration (SW), 

 (ii) stabilizing HL type food regime with migration (SM), 

 (iii) destabilizing LH type food regime without migration (DW), 

 (iv) destabilizing LH type food regime with migration (DM). 

Thus, each of the four treatments was applied to four replicate metapopulations derived 

from distinct ancestral populations. The experiment, consequently, was of a completely 

randomized block type with two fixed factors, stability and migration (each with two levels), 

being crossed with blocks based on ancestry. The HL and LH food regimes, and the 

maintenance of individual subpopulations, were exactly as described earlier in this chapter 

for the experiment on small population dynamics (A. Joshi, V. Sheeba and M. Rajamani, 

unpubl. ms.). Experimentally imposed migration in the SM and DM treatments was only 

among immediate neighbors (fig. 6.15), and was density-dependent according to the 

following arbitrarily determined scheme. Any sub-population (vial) with < 40 adult flies at 

the time of census would not contribute emigrants to its neighboring vials. If a sub-

population had 41-60 adults, two adult females would be removed from it after the census. 

One of these two females would be added to each of the two neighboring vials prior to egg 

laying for the next generation. A sub-population with 61-80 adults would contribute two 

females to each of its two immediate neighbors, and sub-populations with  81 adults would 

contribute three females to each neighboring sub-population. Immigration into a sub-

population was independent of its adult numbers, and the array of sub-populations was 

circularized for purposes of migration (fig. 6.15). 
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FIGURE 6.15. Schematic depiction of the layout of the experimental metapopulations used by A. 
Joshi and V. Sheeba (unpubl. ms.). Each row of circles represents a single experimental 
metapopulation, made up of 8 sub-populations (a..h), at a particular generation. Possible 
immigration and emigration patterns are exemplified by the arrows linking sub-populations in the 
top row. Each sub-population, depending on its density, can send out or receive migrants only to 
or from its immediate neighbors (the array is circularized with respect to migration). The 
coefficient of variation of adult numbers in a single sub-population over time (CVtime) is a measure 
of the degree of destabilization of that sub-population, while the coefficient of variation of adult 
numbers in all 8 single sub-population in a particular generation (CVspace) is a measure of the 
degree of incoherence of the metapopulation at that generation. 

The primary interest in this study was to examine the effect, if any, of density-dependent 

migration on the stability of local sub-population numbers, the degree of coherence among 

sub-populations in numbers, and what effects these may have on the stability of total 
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metapopulation numbers. To this end, the degree of destabilization of a sub-population was 

measured as the coefficient of variation of the number of adults in that sub-population over 

generations (CVtime). Similarly, the degree of destabilization of a metapopulation was 

measured by the CVtime of total adult numbers in the metapopulation over generations. The 

degree of incoherence of a metapopulation in any generation was measured as the coefficient 

of variation of adult numbers across all eight sub-populations in that generation (CVspace)(fig. 

6.15). Larger values of CVspace reflect a situation where fluctuations in numbers in different 

sub-populations are more out of phase with each other (greater incoherence). 

The fluctuations in the numbers of all types of metapopulations seemed to be reduced in 

amplitude with time, suggesting that global (metapopulation) dynamics tended to become 

more stable with time across all four treatment combination (fig. 6.16, table 6.4). Results 

from analyses of variance (ANOVAs) on CVtime of total adult numbers in metapopulations 

also supported this conclusion. As expected, D treatments had significantly higher CVtime, 

over the 12 generations of the study, than S treatments (significant effect of stability: table 

6.5, column 1). The stabilization of metapopulation dynamics over time (fig. 6.16) was 

reflected in the fact that the CVtime, over the last 6 generations of the study was significantly 

less than the CVtime over the first 6 generations for all treatments (table 6.4, significant effect 

of time: table 6.5, column 2). Moreover, the reduction in CVtime from the first to last 6 

generations was significantly greater in the case of the D treatments (significant stability  

time interaction: table 6.5, column 2).  
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FIGURE 6.16. Metapopulation dynamics: time series data on the total number of breeding adults 
each generation, summed over all 8 sub-populations, in the four types of experimental 
metapopulations (data from A. Joshi and V. Sheeba, unpubl. ms.). 

Examining the dynamics of individual sub-populations (fig. 6.17) makes it clear that the 

observed stabilization of metapopulation dynamics was likely due to greater incoherence, as 
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a result of sub-populations drifting out of phase with one another, rather than any 

stabilization at the sub-population level.  

TABLE 6.4. Mean ( 95% c.i.) degree of destabilization (CVtime) in the four types of experimental 
metapopulations. The mean degree of destabilization is averaged across all four replicate 
metapopulations within a particular treatment regime. The confidence intervals are based upon 
least squares estimates of variation among replicate metapopulations, within treatment, in the 
mixed-model ANOVAs (data from A. Joshi and V. Sheeba, unpubl. ms.). 

Treatment CVtime (generations 0-11) CVtime (generations 0-5) CVtime (generations 5-11)

DM 0.439 ( 0.16) 0.794 ( 0.14) 0.249 ( 0.14) 

DW 0.615 ( 0.16) 0.778 ( 0.14) 0.441 ( 0.14) 

SM 0.355 ( 0.16) 0.585 ( 0.14) 0.376 ( 0.14) 

SW 0.389 ( 0.16) 0.644 ( 0.14) 0.368 ( 0.14) 

 

In fact, the treatment means for CVtime over 12 generations, averaged across sub-populations 

within metapopulation, and across replicate metapopulations within treatment, indicate that 

the M treatments may have had slightly more stable dynamics than W treatments, where no 

migration occurred (table 6.6 column 1). This is borne out by the observation of a significant 

effect of migration in the ANOVA on sub-population CVtime, assessed over the 12 

generations of the study (table 6.5, column 3). Examining the treatment means for sub-

population CVtime, assessed separately for the first and last 6 generations of the study shows 

that, in fact, sub-populations in the D treatments got more destabilized over time, whereas 

those in the S treatments became slightly less destabilized over time (table 6.6 columns 2, 3). 

Both these effects are significant at the 0.05 level, and give rise to a significant stability  

time interaction in the ANOVA (table 6.5, column 4). 
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TABLE 6.5. Summary of results of analyses of variance (ANOVAs) on the degree of 
destabilization (CVtime) of metapopulations, and individual sub-populations within 
metapopulations. Entries are F values for the tests of various effects, with P values in 
parentheses. In the ANOVAs done on CVtime assessed over the 12 generations of the study 
(columns 1 and 3), stability (S and D treatments) and migration (M and W treatments)were 
treated as fixed factors crossed with random blocks. In the ANOVAs done on CVtime assessed 
separately over the first and last 6 generations of the study (columns 2 and 4), stability, migration 
and time (generations 0-5 versus generations 6-11) were treated as fixed factors crossed with 
random blocks. Since each Block  Stability  Migration  Time combination was replicated only 
once, random effects and interaction could not be tested for significance, and have been omitted 
from the table (data from A. Joshi and V. Sheeba, unpubl. ms.). 
 CVtime for Metapopulations CVtime for Sub-populations 

Effect Generations 0-11 
overall 

Generations 0-11 
split 

Generations 0-11 
overall 

Generations 0-11 
split 

Stability 17.56 (0.0248) 11.05 (0.0449) 87.04 (0.0026) 19973.44

(0.0001) 

Migration 4.60 (0.1213) 2.84 (0.1908) 20.07 (0.0207) 9.29 (0.0555) 

Time not applicable 1050.25

(0.0001)

not applicable 6.56 (0.0832) 

Stability  

Migration 

1.46 (0.3137) 0.62 (0.4890) 2.18 (0.2367) 0.37 (0.5867) 

Stability  

Time 

not applicable 30.95 (0.0115) not applicable 41.95 (0.0075) 

Migration 

 Time 

not applicable 2.40 (0.2188) not applicable 1.92 (0.2597) 

Stability  

Migration 

 Time 

not applicable 3.87 (0.1438) not applicable 7.04 (0.0768) 

 

It is clear from the preceding results that the S and D treatments had the expected effect 

on dynamics as predicted from the studies of LH and HL type of small populations 
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discussed earlier in this chapter. It is also evident that migration had no effect on overall 

metapopulation dynamics, whereas it did have a significant but small stabilizing effect on 

local sub-population dynamics.  
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FIGURE 6.17. Sub-population dynamics: time series data on the number of breeding adults each 
generation in each of the individual sub-populations of one representative metapopulation from 
each of the four experimental regimes. Data from all metapopulations are essentially similar to 
those depicted (data from A. Joshi and V. Sheeba, unpubl. ms.). 
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Moreover, it appears that metapopulation dynamics became stabilized over time due to 

increased incoherence among sub-populations that had drifted out of phase with one 

another. This last conclusion is strengthened by examining the behavior over time of the 

degree of incoherence in metapopulations (CVspace) in the different treatment combinations. 

In both SM and SW treatments, the overall values of CVspace were relatively low, and 

after increasing in the first couple of generations, seemed to level off and fluctuated within a 

fairly narrow band thereafter (fig. 6.18). In the DM metapopulations, however, values of 

CVspace increased for the first six or seven generations, before leveling off at values that were 

about three-fold greater than those in the SM and SW treatments.  

TABLE 6.6. Mean ( 95% c.i.) degree of destabilization (CVtime) in sub-populations of the four 
types of experimental metapopulations. The mean degree of destabilization is averaged 
sequentially across all sub-populations within a metapopulation, and then across all four replicate 
metapopulations within a particular treatment regime. The confidence intervals are based upon 
least squares estimates of variation among replicate metapopulations, within treatment, in the 
mixed-model ANOVA (data from A. Joshi and V. Sheeba, unpubl. ms.). 

Treatment CVtime (generations 0-11) CVtime (generations 0-5) CVtime (generations 6-11) 

DM 0.969 ( 0.06) 0.948 ( 0.16) 1.058 ( 0.16) 

DW 0.993 ( 0.06) 0.876 ( 0.16) 1.300 ( 0.16) 

SM 0.580 ( 0.06) 0.612 ( 0.16) 0.530 ( 0.16) 

SW 0.662 ( 0.06) 0.729 ( 0.16) 0.525 ( 0.16) 

 

In the DW metapopulations, values of CVspace appeared to increase throughout the 12 

generations of the study and, towards the last couple of generations were higher than those 

seen in the DM metapopulations (fig. 6.18). Linear regressions fitted separately to data on 

CVspace versus time for each individual metapopulation were all significant at the 0.005 and 

0.001 levels for the DM and DW treatments, respectively. In the SM and SW treatments, 
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however, the slopes were much smaller in magnitude (fig. 6.18), and only two of four 

metapopulations in each treatment had slopes that were significantly non-zero at the 0.05 

level.  
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FIGURE 6.18. Degree of incoherence (measured as the CV of sub-population size within a 
metapopulation at each generation) over 12 generations in each of the experimental 
metapopulations. Solid lines not connecting any symbols are least squares regression lines fit to 
data from each metapopulation (data from A. Joshi and V. Sheeba, unpubl. ms.). 
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An ANOVA on the slopes of these regressions, treating stability and migration as fixed 

factors crossed with random blocks, yielded significant effects of stability (P = 0.003), 

migration (P = 0.036) and the stability  migration interaction (P = 0.035). The mean slope 

in the S treatments was significantly lower than that in the D treatments, and mean slope in 

the M treatments was significantly lower than that in the W treatments, where migration did 

not occur. The interaction was driven by the fact that the mean slope did not significantly 

differ between the SW and SM treatments (P = 0.698), whereas the mean slope in the DW 

treatment (0.16) was significantly greater (P = 0.001) than that in the DM treatment (0.10). 

It is clear from the results of this study that several of the differing predictions about the 

effect of migration on local and global stability in metapopulations seem to hold good. It is 

evident that in metapopulations with relatively unstable sub-population dynamics, increasing 

incoherence can stabilize dynamics at the global level, and that even fairly low levels of 

migration can be destabilizing at the global level by reducing incoherence among sub-

populations. At the same time, it also appears that migration can play a role in stabilizing the 

local dynamics by damping out the amplitude of fluctuations in numbers in individual sub-

populations. This effect was relatively weak in this study, but could perhaps be stronger at 

higher levels of migration. These two effects of migration on the degrees of incoherence and 

destabilization are contradictory in terms of global metapopulation dynamics because the 

former is destabilizing and the latter stabilizing. Overall, in this study, too, migration had no 

significant effect on metapopulation stability, perhaps because its effects on incoherence and 

destabilization partly cancel out. This is, to our knowledge, the first empirical study of 

metapopulation dynamics that attempted to examine the interactions between migration and 

local and global stability. This is an area in which much theoretical work has been done, and 
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we hope the results from this study will underscore the valuable role that laboratory systems 

can play in testing predictions from metapopulation theory. 

AGE-STRUCTURED POPULATIONS 

Many natural populations, including Drosophila, consist of adult populations with age-

structure. There has been extensive research on the evolutionary forces that mold the 

patterns of age-specific mortality and survival (Rose, 1991; Curtsinger et al., 1995; Mueller 

and Rose, 1996). However, there has been little work on the dynamics of Drosophila (or other 

species for that matter) with age-structure. One reason for this is that for many species it is 

quite difficult to determine the age of individuals. This practical problem has been an 

insurmountable hurdle for Drosophila as well.  

We have recently developed methods to overcome this problem and have initiated some 

preliminary experiments to determine the effects of age-structure on population stability. 

The basic problem that we have addressed with these new techniques is the effects of adult 

age-structure on the stability of populations maintained in the LH environments. At this 

point we have only some suggestive results. However, we will describe these techniques and 

do some preliminary analyses of these data since we consider this such an important 

problem in population ecology. In addition, the techniques used to study age-structure could 

be used with many other insect species and open up new avenues of research in age-

structured populations. 

The basic technique involves painting cohorts of adult Drosophila with Testors enamel 

paint (diluted with 10% acetone). A small drop is applied to the thorax of the fly with a 0.5 

g syringe (Hamilton, microliter #7000.5). A full syringe provides enough paint to apply to 

about 20 flies. Experienced painters can paint about 100 flies in 1 hour. Our preliminary 

studies of this technique have suggested that male flies painted by experienced people mate 
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as often as unpainted flies in female choice experiments. In addition there appears to be no 

effect of painting on the longevity of adults. The paint does not come off (although if 

applied to the wings we find the wings rip off quickly) and adults are easily scored. The 

general protocol for maintaining age-structured populations is outlined in figure 6.19. 

The raw data show (fig. 6.20) that the adult population consisted mainly of 1-week and 

2-week old adults. Very few flies made it to the third and fourth weeks of adult life. This was 

 

FIGURE 6.19. Maintenance of age-structured Drosophila populations. Each rectangle above 
represents a half-pint Drosophila culture. The letters above each culture stand for a day of the 
week. Every Monday the adult population is transferred to a fresh culture to lay eggs. After 24 
hours (on Tuesday) the adults are removed and the numbers in each age-class counted. The egg-
laden culture is then saved for future collections of progeny. On Friday the adult population is again 
moved to a fresh culture. However, progeny which have emerged from the egg laying cultures that 
are 11, 18 and 25 days old (there are never progeny in the 4-day old culture) are collected, painted 
one color and added to the adult population. The dashed lines above indicate the transfer of flies 
from one culture to another. The solid lines represent the movement of an entire culture. This 
maintenance regime resembles the LH environment since adults are given excess yeast (indicated 
by the “Y”) to feed on prior to egg laying and larvae develop in cultures with low levels of food (15 
mL). 
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due to fairly high mortality among adults caused by the frequent transfers the protocol (fig. 

6.19) required. This aspect of the environment can be easily modified but for now we will 

analyze the results in figure 6.20 in more detail. 

To assess whether these populations are exhibiting any cycling as we saw with earlier 

experiments with flies maintained in an LH environment we have performed a spectral 

analysis on the five populations in figure 6.20 (fig. 6.21). These results suggest that there may 

be a periodic component at 0.16 cycles per week, which corresponds to a period of 6 weeks. 

This periodicity is strongest in the total population size. To interpret this observation recall 

that the time units in figure 6.21 are weeks not generations as in figure 6.9. After the adult 

population has laid eggs the first progeny from these eggs are produced two weeks later but 

most emerged during the third week. Since the total population size is composed mostly of 

1-week old flies, these progeny have a big impact on total adult numbers. Thus, the bust or 
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FIGURE 6.20. Age class numbers in five populations of D. melanogaster maintained by the protocol 
outlined in figure 6.19. The first two weeks of the experiment are not included. 
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boom cycle seen in figure 6.9 that occur with a period of two-generations would appear in 

the age structured populations with a period of six weeks, which we have observed here.  

Thus, our preliminary result is that the addition of age-structure has not removed the 

cycling that was present in the LH-populations without age-structure. The model developed 

in chapter 2 (equation 2.16) suggests one reason for this result. That model consisted of only 

two adult age-classes and indeed the populations maintained here (fig. 6.20) consisted of 

mainly two adult age-classes. If survival from the first adult age-class to the second was low 

age-structure did not produce a stable equilibrium point (fig. 2.5). In this experiment the 

average survival from the first to the second adult age-class was quite low, 0.24 0.04 (95% 
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FIGURE 6.21. The spectral density function estimates for the five populations shown in figure 
6.11. The points are obtained from the average spectral density from each of the five 
populations. The standard errors are estimated from these five observations also. The series 
were zeroed and detrended prior to the analysis. A Hamming window was used with five adjacent 
observations (Chatfield, 1989, pg. 116). 
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confidence interval). Clearly, more work is needed before the role of age-structure in 

determining population stability can be fully evaluated. With this experimental system we 

would need to run the experiment for a much longer period of time so that 

contemporaneous controls (no age-structure) could be run to demonstrate that the LH 

environment does produce cycles. Likewise, the techniques would need to be altered (e.g. by 

keeping the adults in cages) so that adult survival is increased.  

EVOLUTION OF POPULATION DYNAMICS 

The evolution of population dynamics has served as one of the earliest unions of 

ecological and evolutionary theory. MacArthur (1962) first introduced the idea that the 

carrying capacity may be an ecological analog of fitness. These ideas were extended by 

MacArthur and Wilson’s (1967) development of r- and K-selection theory. The synthesis was 

complete with the development, by several people, of formal population genetic theories of 

density-dependent natural selection (Anderson, 1971; Charlesworth, 1971; Roughgarden, 

1971; Clarke, 1972).  

The most important assumption of these models is that fitness is equivalent to per-capita 

rates of populations growth. For the simple single-locus versions of these models we know 

from population genetic theory that selection will maximize fitness (Kingman, 1961), and 

hence population growth rates are maximized. In population growth models, like the logistic, 

fitness at high density is closely related to the carrying capacity, and thus we see in one class 

of models selection resulting in the maximization of the carrying capacity (Roughgarden, 

1976). However, there are several other theoretical settings in which selection does not 

necessarily maximize the equilibrium population size (Prout, 1980). 

Ultimately, the consequences of natural selection on population growth rates must be 

studied empirically. It was with this goal in mind that we undertook a laboratory study of 
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density-dependent selection in Drosophila in 1978. The populations used in this study 

originated from wild caught populations from Berkeley, California in 1975. The history of 

these populations is outlined in figure 6.22.  

In keeping with the original formulation of density-dependent natural selection by 

MacArthur and Wilson, two environments were created to study the evolution of Drosophila 

at extreme densities. The r-environment maintained larvae and adults at low density (Mueller 

and Ayala, 1981a). Adults reproduced during the first week of adult life only. Additionally, 

the size of the breeding adult r-populations was only 50 for the first 188 generations. After 

that time the breeding population size was increased to 500. The K-populations were kept at 

high larval and adult densities by culturing the flies with the serial transfer technique (fig. 

3.1). In these populations the breeding number of adults was close to 1000 and adults were 

 

FIGURE 6.22. The origin and history of laboratory populations of D. melanogaster used to study 
density-dependent selection. Flies caught in nature were brought back to the laboratory and used 
to establish 25 new populations which were each homozygous for a different second chromosome 
from these wild flies (Mueller and Ayala, 1981d). These lines were kept in the laboratory for about 
50 generations before they were crossed to create a genetically variable population which was 
used to create three K-populations and three replicate r-populations. After about 198 generations 
in the r-regime three new types of populations were created, each replicated three fold. The rr 
populations were created by doing all pair wise crosses of the three r-populations. The progeny of 
these crosses were also used to create the rrK populations. The rr populations were kept in the 
r-environment while the rrK populations were kept in the K-environment. The rK populations were 
derived from each of the three r-populations but were maintained in the K-environment. 
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permitted to reproduce until they died. There were three independent replicates of each r- 

and K-population. 

The first measurements of population growth rates were made after just 8 generations 

and showed that at low population densities the growth rates were higher in the r-

populations relative to the K-populations but the reverse was true at high population 

densities (fig. 6.23). This genetic differentiation may have been due to genetic changes in 

only the r-populations, only the K-populations or to changes in both populations. To sort 
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FIGURE 6.23. The per-capita growth rates at four adult densities for populations cultured at low 
density (r, rr) and populations cultured at high densities (K, rK, and rrK). The bars are standard 
errors. The derivation of the various lines is described in the text. The measurements for the r- 
and K-populations shown as solid histograms were made after 8 generations of selection. The 
measurements for the other populations were made after 223 generations of selection in the r-
environment (see fig. 6.22). The bold numbers are the fitnesses of the K-populations relative to 
the appropriate r-population. 
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this out several new populations were created after 198 generations of r-selection (fig. 6.22). 

Samples of flies from each of the replicate r-populations were introduced to the K-

environment, these populations were called rK’s. After 25 generations population growth 

rates were measured in the three replicate r- and rK-populations (fig. 6.23). For this 

experiment it was reasonable to assume that the r-populations had changed little in those 25 

generations since they had 198 generations to adapt to the laboratory environment. These 

results were consistent with the earlier observations, growth rates of the rK-populations were 

depressed at low density but elevated at the high densities relative to the r-populations. 

Since the r-populations had undergone many generations of drift at a much smaller 

population size than the K-populations, some of these results might be due to the accidental 

fixation of deleterious mutants in the r-populations or perhaps the loss of genetic variation 

in the r-populations. The rr populations reintroduced genetic variation into each r-

population by performing all possible crosses between the three r-populations. When the rr 

populations were moved to the K-environment and allowed to evolve for 25 generations, 

changes in population growth rates similar to the r- and rK-populations were observed (fig. 

6.23).  

The r- and K-populations are presumably genetically variable (the experiments with the 

rK and rrK populations demonstrate this). Thus, the differences in growth rates measured in 

figure 6.23 reflect performance averaged over a number of genotypes. These growth rates 

can also be used to estimate mean fitness of the r- and K-populations. Let r be the growth 

rate of the r-population at a particular density and K be the same growth rate for the K-

population. Since a generation in these serial transfer systems is about three weeks the 



Stability in Model Populations  Drosophila 

L.D. Mueller & A. Joshi  6-53 

relative fitness of the K-population can be estimated as, 



K

r









3

. These relative fitness values 

are shown in figure 6.23. At the extreme densities we see that the mean fitness differences 

were between 8% and 53%. Thus, fitness differences between individual genotypes were 

probably even greater these values. Fitness differences of this magnitude would result in 

strong selection. Given this strong selection it is not surprising that repeated selection 

experiments would yield similar results (since the effects of selection would overwhelm 

random forces like drift). 

All combined these experiments provide compelling evidence that rates of population 

growth may respond to selection. Further there are trade-offs involved in this evolution: 

populations adapted to crowded conditions do more poorly at low density than populations 

adapted to low density conditions and vice-versa. These adaptations to high and low density 

have been further dissected. Larvae adapted to crowding show increased competitive ability 

for food which is accomplished by increased feeding rates (fig. 6.2; Mueller, 1988a; Joshi and 

Mueller, 1988; Guo et al., 1991; Santos et al., 1997). These larvae also differ in their two 

dimensional foraging behavior. The K-populations are predominantly the rover phenotype 

and the r-larvae are predominantly the sitter phenotype (Sokolowski et al., 1997). Larvae kept 

at high density also evolve increased pupation height, which reduces mortality among pupae 

(fig. 6.3; Mueller and Sweet, 1986; Joshi and Mueller, 1993).  

Several earlier studies with Drosophila had noted that populations newly introduced into 

the laboratory and kept near their carrying capacity show a gradual increase on the 

equilibrium population size (Ayala, 1965b; Ayala, 1968; Buzzati-Traverso, 1955). 
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INBREEDING INCREASES THE RISK OF POPULATION EXTINCTION 

A practical application of population dynamic information is to the prediction of the 

chance of population extinction (Ewens, et al., 1987; Lande, 1993; Mangel and Tier, 1993, 

1994; Ludwig, 1996, 1999). Models of population extinction have shown that an important 

component of this probability is the chance of rare catastrophic events and environment 

variation. Typically we would expect laboratory studies to shed little light on these quantities 

since they are characteristics of specific environments and habitats. However, another 

important issue in conservation biology has been the effects of inbreeding on the risk of 

population extinction (Allendorf and Leary, 1986; Lande and Barrowclough, 1987; Caro and 

Laurenson, 1994). This is especially interesting since many endangered species exist as small 

populations that increase the likelihood of matings between close relatives. 

With Drosophila we can simultaneously inbreed populations and then determine the 

effects on population growth. In fact this sort of experiment was carried out 20 years ago to 

address questions unrelated to conservation ecology. Mueller and Ayala (1981d) created 24 

populations of D. melanogaster, each homozygous for a different second chromosome 

sampled from nature. Since the second chromosome is nearly 40% of the genome these 

populations had probabilities of alleles being identical by descent (F) of nearly 40%. In 

addition to these 24 inbred population was a single outbred population created by mass 

crossing of all 24 inbred populations on three separate occasions. 
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FIGURE 6.24.. The probability of population extinction after 1000 generations in 24 inbred 
populations (thin-gray lines) and one outbred population (thick-black line) as a function of the 
initial population size. These probabilities were computed from the Markov chain model of Ludwig 
(1999), assuming the standard deviation of the environmental variation was 0.5, and quasi 
extinction occurred at 10 individuals. Population growth for each population was modeled by the 
theta logistic equation and parameter values for each line are given in Mueller and Ayala (1981c). 

For each of these populations the rates of population growth in the serial transfer system 

were estimated over a range of densities (see chapter 3 for additional discussion). We have 

used simple first-order difference equations to summarize the asymptotic rates of population 

growth at each density (Mueller and Ayala, 1981c). While these rates of growth are 

approximations for the true serial transfer system the goal of this analysis is to evaluate the 

relative differences between populations rather than achieve a precise numerical estimates of 

population extinction. 
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To estimate probabilities of extinction we used the Markov chain model developed by 

Ludwig (1996, 1999). This model assumes environmental variation that is normally 

distributed on a natural log scale of population size. In addition to make the Markov chain 

finite an upper bound on population size must be specified. In these calculation we have set 

the upper bound at 150% of the carrying capacity. Since the population growth models may 

predict sizes greater than this upper bound the growth models are modified to prevent this. 

Additionally in the Markov chain probabilities of going from size j to the maximum size in a 

single generation also include the probability of going to greater population sizes than the 

maximum. 

The results (fig. 6.24) show that in general inbreeding leads to a pronounced increase in 

the chance of extinction. This is not unexpected since a major conclusion from these studies 

was that inbreeding caused severe reductions in population growth rates at low densities, 

relative to the outbred population (Mueller and Ayala, 1981d). However, another 

observation from the original studies was that there was little difference between the outbred 

and inbred populations in rates of population growth at high densities. Nevertheless, we see 

that the outbred population still has a substantial advantage at high densities although 

slightly reduced (at the lowest starting density there are only two inbred populations with 

lower probabilities of extinction while at the higher densities there are six). This is certainly 

related to the fact that even if the population starts at a high density, to go extinct it must 

pass through some low densities at which point the ability of the population to grow at low 

density is crucial. We conclude that for species that don’t normally inbreed there can be 

substantial negative effects on long term population persistence due to inbreeding. 

This problem has also been studied directly by Bijlsma and his colleagues (Bijlsma et al., 

1997; Bijlsma et al., submitted). In these studies populations of D. melanogaster were inbred to 
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different levels. Replicate small populations were then followed over time and population 

extinction recorded. The results show a clear increase in rates of extinction for inbred 

populations. Additionally, environmental stresses like high temperature or ethanol increased 

the chances of population extinction much more in inbred populations than in outbred 

populations.  

EVOLUTION OF POPULATION STABILITY 

The experimental research reviewed earlier in the chapter has shown that the stability of 

Drosophila populations may be manipulated by varying the levels of food supplied to larvae 

and adults. It is therefore possible to create replicate populations of Drosophila which live in 

two alternative environments, one conducive to stable population dynamics the other not. 

These populations may then adapt to their respective environments and evidence of altered 

population dynamics can be obtained. In particular it is of great interest to determine if 

populations kept in an environment that causes instability may evolve life histories which 

yield stable population dynamics. We are especially interested in evolution by selection at the 

individual level (as opposed to some type of group selection mechanism). At the end of 

chapter 2 several theoretical models for the evolution of population stability at the individual 

level were reviewed. These models develop the plausibility of evolution increasing 

population stability but their assumptions are untested. 

The r- and K-populations described earlier are not the best material for these 

experiments for a variety of reasons, including, (i) low effective population size in the r-

populations relative to the K’s lead to more rapid loss of genetic variation and fixation of 

deleterious mutations (Mueller, 1987). (ii) Reproduction at different ages in the r- and K-

populations, lead to different levels of age-specific selection which may be confounding. (iii) 

Density effects on two life-stages (larvae and adults) simultaneously make it impossible to 
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unambiguously assign selection at a specific life stage to particular types of evolution. To 

overcome these problems several new populations were created (fig. 6.25). The CU 

populations experience crowding only during the larval life stage (fig. 6.25). The UU’s serve 

as controls and are uncrowded during their larval life stage.  

The UU and CU populations served as the sources for the populations used to study the 

evolution of population stability. Samples from each CU and UU population were placed in 

two different environments: the LH environment which tends to produce population cycles 

and the HL populations which tend to give rise to a stable point equilibrium (fig. 6.25).  

An important aspect of selection in the LH and HL populations is the potential for 

population cycles to cause occasional bottlenecks in the numbers of breeding adults. For 

instance in figure 6.8 populations occasionally dip to 60 adults in the LH populations. 

 

FIGURE 6.25. The derivation of twenty Drosophila populations used to study the evolution of 
population stability. The B, UU and CU populations are all maintained with breeding populations of 
1000-2000 adults. 
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Likewise, in Nicholson’s blowfly experiments population size was reduced to less than 100 

breeding adults for short periods of time. These bottlenecks can cause inbreeding depression 

which typically reduces female fecundity (Marinkovic, 1967). Since, population stability is 

often a function of maximum rates of reproduction at low density, inbreeding may enhance 

population stability in a highly fecund species like Drosophila. 

Consequently, for these experiments the procedures used in figure 6.8 were altered so 

that populations would be sufficiently large that bottlenecks would not reduce total numbers 

below 1000 breeding adults. The procedures for maintaining these experimental populations 

maintained many of the features of the experimental system used in figure 6.8 but the total 

Maintenance of the LH and HL Populations

Each population
consists of eight
half-pint cultures

Adult flies are collected
from the cultures daily

and added to a 
large population cage
until day 20 after eggs

were first laid.

After all adults are
collected the flies are

given a petri dish
with either excess live
yeast (LH) or 1.5 mL

of a 1.5% yeast
solution (HL)

After two days of feeding
a fresh food plate is

put in the cage and flies

are allowed to lay eggs for
24 hours. These eggs are

then divided evenly into the
eight cultures, which have a

total of either 15 mL food (LH) or
35 mL of food (HL) per culture

 

FIGURE 5.26. The life cycle of Drosophila populations used to study the evolution of population 
stability (after Mueller et al., in press). 
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number of cultures to maintain each population increased about eight-fold (fig. 6.26). This 

produced adult population sizes that were typically between 2000 and 6000 (fig. 6.27). 

The first assessment of this experiment occurred after 45 generations of selection 

(Mueller et al., in press). The conclusions from that examination was that there had been no 

evidence that the dynamics of the unstable LH populations about their equilibrium point had 

been altered due to 45 generations of selection. However, there was strong evidence of 

evolution in these populations in response to density (Mueller et al. ,in press; Joshi et al., 

1999, fig. 6.30). One interpretation of these results is that selection may in fact be taking 

place but was insufficient in magnitude to be detected by our methods. There are now a total 

of 68 generations of selection completed in the LH and HL populations (figs. 6.27-6.28) 

which we present below. 

From figures 6.27-6.28 it is clear that the LH populations tend to be larger and all 

populations only rarely went below 1000 adults in any single generation. Each generation the 

total dry weight of the adults was recorded (fig. 6.29). These data demonstrated that the 

adults in the LH populations were much smaller than adults in the HL populations (Mueller 

et al., 1999) due to the higher larval densities. In the novel HL environment the CU 

populations show a significant increase in numbers of adults over time (fig. 6.27) and a 

significant decline in mean size (fig. 6.29; Mueller et al., in press). These changes may reflect 

adaptation of the CU populations to the low larval density environments. These changes 

could come about from increased egg-to-adult viability that accompanied the declining 

feeding rates in these populations (fig. 6.30), since these traits appear to genetically correlated 

(Borash et al. 1998, Borash et al., unpublished).  

We used a second-order RSM model to estimate the stability determining eigenvalue of 

each population, 
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(8)  ln( / )N N a a N a N a N a N Nt t t t t t t      1 1 2 3
2

4 1 5 1
     . 

These results show no consistent trend in the 10 LH populations (table 6.7). In six out of 10 

case the magnitude of the eigenvalue decreased. We have also examined the autocorrelation 

function in the first and last 15 generations of the experiment. Presumably, evolution that 

would affect population dynamics might result in a change in the magnitude or sign of the 

correlations over the course of the experiment. The autocorrelations give no suggestion of a 

consistent change between the start and end of the experiment (fig. 6.31). Our conclusions 

are similar to Mueller et al. (in press) who examined the first 45 generations: there is no 

evidence that the stability properties of the LH populations have changed despite evidence 

of adaptation to the high and low larval crowding in these environments. 
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FIGURE 6.27. The adult population size in the 10 HL populations of D. melanogaster over 68 
generations of maintenance by the techniques outlined in figure 6.26. 
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FIGURE 6.28. The adult population size in the 10 LH populations of D. melanogaster over 68 
generations of maintenance by the techniques outlined in figure 6.26. 
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FIGURE 6.29. The average weight per adult in the 10 LH and 10 HL populations of D. 
melanogaster over 68 generations of maintenance by the techniques outlined in figure 6.26. The 
HL populations are uniformly and significantly heavier than the LH flies, due to the much higher 
larval densities in the LH populations. The CU-HL populations show a significant decline in 
average size, which accompanies their increase in adult population over the same time period 
(see fig. 6.27). 
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FIGURE 6.30. The change in feeding rates of the CU-HL and CU-LH populations (top panel) and 
the UU-HL and UU-LH populations (bottom panel). Each bar is the mean of the five replicate 
populations and the error bars are 95% confidence intervals. Initially there are no differences 
between HL and LH populations although the CU populations feed faster than the UU 
populations due to their history of high larval densities. With time the feeding rates of the LH 
populations exceed that of the HL populations due to the increased larval density in the LH 
cultures relative to the HL cultures. 
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TABLE 6.7 The estimated stability determining eigenvalue for the ten CU- and UU-LH 
populations during the first and last 15 generations of the experiment. In each case the second-
order model (Eq. 6.8) was used with  set to 0.5. 

Population First 15 (generation 1-15) Last 15 (generation 54-68) 

CU1 -1.89 -0.78 

CU2 -0.70 -0.76 

CU3 -0.73 -0.95 

CU4 -1.08 -0.63 

CU5 -0.75 -1.53 

UU1 -1.43 -0.61 

UU2 0.42* -0.80 

UU3 -0.92 -0.77 

UU4 -0.96 0.37* 

UU5 -1.12 -0.30 

*Complex eigenvalue 
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FIGURE 6.31. The autocorrelation of population size variation in the CU and UU-LH populations. 
The correlations were determined on the variation in the first 15 generations and the last 15 
(generations 54-68) generations. Any linear trends were removed from the series prior to the 
calculation of the autocorrelations. The error bars are 95% confidence intervals based on the five 
replicate populations. 

It is difficult to say precisely why there has been no evolution of population stability. It 

seems unlikely that there is no genetic variation for important life history characters in 

Drosophila, given the sorts of information we have already reviewed. However, it may be that 

the strength of selection on characters that would ultimately affect population stability is 

weak and thus difficult to observe even after 68 generations. It may also be possible that the 
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characters, which might evolve to change population stability, would then affect other fitness 

components negatively and thus don’t evolve. 

In any case it is clear from this experiment that one class of environments can cause 

unstable dynamics. Over ecologically relevant time spans populations of Drosophila do not 

seem to be capable of changing population stability by adaptation to these particular 

environments. 

SUMMARY 

 Models of the dynamics of Drosophila populations suggest that the relative levels of 

food to the larval and adult stages will be crucial for the ultimate stability of the 

population. The conditions that favor stability are high levels of food for larvae and 

low levels of food for adults. Cycles and other departures from stable point equilibria 

are predicted to follow when larvae are given low levels of food and adults are given 

high levels of food. 

 The predictions from these models are supported by empirical research with 

replicated laboratory populations of D. melanogaster. 

 Density-dependent natural selection results in adaptations that affect rates of 

population growth in D. melanogaster. One of the individual characteristics that 

increase in crowded environments is the larval feeding rate.  

 When Drosophila are kept in environments that result in population cycles, evolution 

of traits, like feeding rates, are observed but the stability characteristics of the 

populations remained unchanged. 
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CHAPTER SEVEN 

Natural Populations 

This chapter marks a major departure from the others since here we will consider natural 

populations rather than model laboratory systems. Natural populations are, in many ways, 

are the antithesis of model populations. In nature, environmental factors vary over time and 

space, sampling efforts may not be standardized, basic understanding of the role of density 

and age-specific effects on mortality and fertility may be lacking, and the impact of other 

species – both competitors and predators- may be unknown. We should add that this is not 

a comprehensive list of the liabilities of natural populations. Given all this, why should we 

bother to study natural populations at all? Certainly, an appreciation for the types of 

dynamics observed in natural populations should motivate the questions addressed by 

research with model systems. If natural populations were rarely chaotic a great expenditure 

of time and energy to uncover when model systems are chaotic would seem pointless. 

However, if natural populations were rarely chaotic and model systems were almost always 

chaotic some reconciliation of these differences would be warranted. What is clear is that the 

factors responsible for the dynamical properties of natural populations may often be difficult 

to infer.  

Our focus in this chapter will be to review studies that span the range of techniques that 

have been discussed so far. Our goal will be to explore the strengths and weaknesses of 

these approaches, as applied to natural populations, rather than to be comprehensive in our 

review of natural systems. For instance we will not review one of the best documented cases 

of population cycling in nature, the lynx-hare system, since it is clearly a predator-prey cycle 

and moreover has been reviewed several times previously (Royama, 1992, chapters 5-6). 
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Indeed, it may ultimately be the case that many if not most cycles in natural populations arise 

from between species interactions. 

SIMPLE MODELS 

The work of Hassell et al. (1976) was the first major effort to analyze data from many 

natural populations and infer their stability behavior. Stability was assessed by obtaining 

parameter estimates from the simple discrete time model, 

(7.1)    N N aNt t t


 1 1


. 

The stability of this model depends on the value of both  and (see equation 3.1 and 

discussion that follows). The parameters a and  were estimated by regressing “observed 

mortality” on Nt. The “observed” mortality was in fact the quantity log[Nt / Nt+1]. Thus, 

the observed quantities, Nt+1 and Nt were transformed by the quantity , which was 

estimated indirectly. The base value of  was based on an estimate of maximum fertility. 

This maximum fertility was the further reduced by a number of density-independent factors. 

For instance in the case of the winter moth Hassell et al. (1976) reduce maximum fertility 

after taking into account, (i) mortality between prepupal and adult stages, (ii) mortality due to 

the parasitoid, Cyzenis albicans, (iii) mortality due to microsporidian disease, (iv) mortality due 

to other larval parisitoids and (v) mortality due to the pupal parasitoid, Cratichneumon culex. 

These factors were significant and were responsible for reducing  in the case of the winter 

moth, from 100 down to 5.5. The regressions that gave rise to  treat  as a constant and 

therefore do not reflect its uncertainty. 

Morris (1990) compared the techniques used by Hassell et al. for estimating the 

parameters of equation 1 to two additional techniques. The first additional technique was 

similar to the method described above except the mortality was not log transformed. The 
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second additional technique used the observed time series to directly estimate the values of 

a, , and . Interestingly, Morris’s estimates of  and  showed much less precision when 

estimated from the time series. We suggest that the high precision obtained by Morris for his 

estimates of  and  by the first two techniques is illusory and a consequence of ignoring the 

variability in  as described above. Morris notes that the parameter estimates and their 

confidence intervals are sensitive to the method of estimation. More pointedly we feel this 

difference arises by treating uncertain parameters () as known constants. 

While the approach of Hassell et al. was useful for framing the problem of population 

stability their techniques suffer from several other problems. Certainly, there is no need to 

restrict these analyses to equation 1. It is also dangerous to restrict the analysis of time series 

data to first order equations for the reasons outlined in chapter 2. In all fairness, Hassell et 

al. were extremely cautious about the interpreting their results. The techniques developed by 

Turchin and Taylor (1992, reviewed next) relax many of these assumptions and thus ought 

to be more robust.  

The major conclusion by Hassell et al. was that few populations showed cyclic or chaotic 

dynamics. Those that did were unusual populations such as agricultural pests (Colorado 

potato beetle) or laboratory populations (blowflies). The application of more robust 

techniques to natural populations has not completely reversed this view but has nudged 

more populations into the cyclic and chaotic regions (Turchin and Taylor, 1992). 

Nevertheless, the predominant impression left by Hassell et al. stills remains, most natural 

populations appear to fall within the deterministically stable region of dynamical space. 

SURVEYS UTILIZING RESPONSE SURFACE METHODS (RSM)  

The studies we will review here were pioneered by Turchin and Taylor (1992) and later 

extended by Ellner and Turchin (1995). Even within the constraints of working with natural 
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populations, there are some studies that yield data that are relatively more amenable to 

rigorous analyses. Some of the desirable features of samples from natural populations would 

include the following. (1) Samples taken at regular time intervals in the same location. If 

samples are taken at regular yearly intervals then there is no need to worry about correlations 

between samples that arise due to seasonal variation. If multiple samples per year are taken 

then seasonal variation is a potential problem. (2) The effort and techniques used for 

collecting census information should be standardized and constant across time intervals. 

Unfortunately it is often difficult to determine the quality of census records for natural 

populations merely by inspection. If we were looking at counts of eggs laid by a single 

female Drosophila in a day for instance, numbers above 200 would automatically signal an 

error since this is far above what has ever been observed for fruit flies. Except for negative 

numbers there is almost no set of observed population counts whose numerical value would 

similarly inform us of erroneous experimental technique. This makes the evaluation of 

historical data and published records problematic.  

Turchin and Taylor (1992) used both time series analysis and the RSM technique to infer 

the behavior of natural populations from their census data, whereas Ellner and Turchin 

(1995) focussed on looking for indications of chaotic versus non-chaotic dynamics by 

estimating Lyapunov exponents for each population by the RSM technique and several other 

regression models. Ellner and Turchin used the RSM technique and several other regression 

models to estimate the Lyupanov exponent for each population. The results of these studies 

are summarized below (Table 7.1). 
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TABLE 7.1. Summary of the dynamical behavior of natural populations studied by Turchin and 
Taylor (1992) and Ellner and Turchin (1995). 

Dynamical Behavior Population/Species 

Chaos Phyllaphis fagi 

Quasiperiodicity Lymantria dispar, Zeiraphera diniana, Lynx, Belyak 

hare 

Stable Cycles Drepanosiphum platanoides 

Stable Equilibrium (oscillatory approach) Hyoicus pinastri, Dendroctonus frontalis, Lymantria 

monacha, Bupalus piniarius, Hyphantria cunea, 

Vespula spp., Artic fox, colored fox 

Stable Equilibrium (exponential approach) Choristoneura fumiferana, Dendrolimus pini, Panolis 

flammea 

Not chaotic Red grouse*, wolverine, martin, muskrat, red & 

artic fox, partridge, rabbit, snowshoe hare*, 

weasel, Ceroplastes floridensis, Parlatoria camelliae, 

Trips imaginis, measles 

*one of three tests suggest chaos 

Although a relatively greater proportion of the species in Table 7.1 show cycles or chaos 

compared to those studied by Hassell et al. (1976), such species are still in a minority. Earlier 

analysis of data on the incidence of measles in humans had suggested chaotic dynamics 

(Sugihara and May, 1990), a conclusion supported initially by the analysis of Ellner and 

Turchin (1995). However, when Ellner and Turchin reanalyzed these data, explicitly 

accounting for seasonal variation, they obtained a negative Lyapunov exponent, suggesting 

mild stability, rather than chaos. This example underscores the importance of taking into 
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account seasonal contributions to observed patterns of variation when data are collected 

more frequently than once a year.  

Unlike Turchin and colleagues, who have relied on non-linear regression techniques for 

providing estimates of model parameters, Dennis and Taper (1994) have used maximum 

likelihood techniques. Although of maximum likelihood estimates have many desirable 

properties, their application requires knowledge of the statistical distribution of the random 

noise, a constraint that does not apply in the case of regression. Dennis and Taper assume 

that on a logarithmic scale errors are normally distributed with a common variance 

independent of population density. While this sounds reasonable there are few data that can 

be used to support these assumptions. Ideally, to test the assumption of a common variance 

across densities one should collect independent replicated observations of population 

growth at a range of population densities. While this type of data would be difficult if not 

impossible to collect in natural populations it has been collected in laboratory populations 

(fig. 7.1). 
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FIGURE 7.1. The variance of the log of growth rates measured in 23 genetically different 
populations of D.melanogaster. Each population was homozygous for a different second 
chromosome sampled from nature and is represented by a different symbol. There are occasional 
examples of genotypes that affect the variance but there are no consistent differences by density. 

The data in figure 7.1 show little effect of density on the variance (on a log scale) of 

population growth rates over 23 genetically different populations of Drosophila melanogaster 

(Mueller and Ayala, 1981d).  
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DETAILED STUDIES OF SINGLE POPULATIONS 

In this section, we review a few studies of natural populations that focus on examining the 

dynamics of one or a few species for a prolonged period of time. These studies yield a 

relatively detailed understanding of the basic biology of the species of interest, an aspect that 

makes it possible to appreciate better some of the details of the population dynamics 

observed. 

Soay Sheep and Red Deer 

We first discuss a multi-year study on Soay sheep (Ovis aries) and red deer (Cervus 

elaphus) that has successfully yielded a sophisticated understanding of population regulation 

(Clutton-Brock, et al., 1997). In this study, population size variation for Soay sheep and red 

deer was recorded for about 9 and 20 years, respectively. Although several age-classes were 

followed in each population, the fundamental difference between the two species is evident 

from data on total numbers (fig. 7.2). The red deer population shows relatively stable 

dynamics, with small changes from one year to the next, while the Soay sheep population 

shows dramatic oscillations from year to year. 
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FIGURE 7.2. The total population census of Soay sheep on the island of Hirta, St. Kilda and red 
deer in the North Block of Rum, Inner Hebrides. The symbols show the observed census counts 
and the lines are predicted sizes from an age-structured model (after Clutton-Brock et al., 1997). 

The effects of crowding on survival and fertility are well documented for these two 

ungulates (Clutton-Brock et al., 1997), and this detailed knowledge is ultimately important to 

understanding why Soay sheep do not settle down to an equilibrium like the red deer. Soay 

sheep, unlike red deer, are capable of producing large numbers of offspring in any year, and 

can easily exceed the numbers that can be supported by the environment, giving rise to large 

population crashes. The key life-history characteristics that contribute to the population 

dynamics differences between these two species are as follows. (i) Female Soay sheep have 

offspring in the first year of life, whereas it takes red deer 3-4 years before females 

reproduce. Moreover, while Soay sheep may have twins, and red deer almost always give 

birth to only one calf at a time. (ii) Soay sheep are more likely than red deer to give birth in 

consecutive years. Both Soay sheep and red deer females become pregnant in the fall and 
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give birth in the spring. However, in Soay sheep, young lambs become independent of their 

mothers early in the summer, permitting the females to feed and put on enough additional 

weight to support another pregnancy in the fall. Red deer calves continue to feed from their 

lactating mothers throughout the summer making it nearly impossible for a single female to 

have calves in two consecutive years. (iii) Over winter survival drops precipitously with total 

density for Soay sheep but only gradually for red deer.  

Ultimately, though, there is no replication of populations in this study. The extent to 

which we believe that the observed dynamics are driven by the underling life-history 

differences enumerated above rests on the logic of those arguments, not on our ability to 

manipulate these factors and repeatedly see the predicted behavior. Nevertheless, the 

strength of this system is the ability to carefully document survival and reproduction among 

individuals in the population. This permits a more sophisticated understanding of the 

population level phenomena by extrapolation from the behavior of individuals. 

Clutton-Brock et al. (1997) also suggest that feral populations may be more likely to 

exhibit cycles than wild populations due to the artificial selection for high fertility while the 

ancestors of the feral animals were in captivity. They add that feral populations are often 

established in areas free from predation, potentially exacerbating this effect. The validity of 

this generalization may, however, vary across species. Moreover, one would expect that if 

domesticated animals released in the wild came back contact with wild populations, then the 

domesticated traits would not persist in subsequent generations. After all fertility is always 

under strong selection in natural populations. Thus, if fertility in natural populations is below 

what can be achieved by artificial selection it is likely due to trade-offs in other fitness 

components. However, if feral populations are protected from introgression from natural 
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populations, then the conjecture of Clutton-Brock et al. (1977) may be valid, at least for 

some species. 

Perennial Grass, Agrostis scabra 

Tilman and Wedin (1991) studied monocultures of the perrenial grass Agrostis scabra, 

maintained at different levels of soil nitrogen. They recorded live biomass and litter (dead 

biomass) yearly, and found that treatments with the highest nitrogen levels exhibited large 

and erratic fluctuations in live biomass from year to year that could not be explained by 

environmental variation.  

The biology of this system suggests that growth of new biomass in any given the current 

year is a function of the litter left over from the previous year’s growth. A very dense litter 

inhibits growth by intercepting light, and the decay of the litter removes this inhibitory 

effect. Decay of the litter is removes the inhibitory effect. A model of the dynamics of live 

biomass and litter biomass developed by Tilman and Wedin suggested that at very high 

nitrogen levels live biomass could behave chaotically over time. The parameters of the model 

were estimated by experimentally varying nitrogen levels and measuring the biomass 

produced from those plots. The time series were, however, too short to use to accurately 

estimate the model parameters. 

For this system there is a time delay of one year between the production of large 

amounts of litter and the consequent density-dependent reduction of plant growth. This 

delay can ultimately drive the system to cycles or chaos when productivity is very high (e.g. at 

soil high nitrogen levels). This experiment, even though the plants were grown outdoors, 

conditions were only semi-natural because experimenters controlled seed density, water, and 

nitrogen. Indeed the strength of this study lies in the ability of the experimenter to 

manipulate aspects of the environment that were important for determining stability. 
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Lemmings and Voles 

Cycles in the dynamics of populations of small mammals have interested ecologists for 

more than 70 years (Elton, 1924). There are a number of well-studied natural populations of 

small mammals in Northern Europe that have been sampled at regular intervals for extended 

periods of time, and we show some of these data in figure 7.3.  

 

FIGURE 7.3. Population size variation for voles of the genus Clethrionomys. All three populations 
are from Fennoscandia, though the population in the bottom panel is from a site further south 
than those shown in the top two panels. �’s are the estimated Lyupanov exponent (after Falck 
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et al., 1995b), and their values indicate that the populations shown in the top panels may exhibit 
chaotic dynamics. 

Many explanations for these cycles have been put forward and discussed in the literature 

(review by Batzli, 1992) and we will not, consequently, review them here. It is clear that vole 

dynamics are affected by a number of predator species in addition to intraspecific 

competition. However, there is much less information about the dynamics of these predator 

populations and inferences about the dynamics of vole populations are typically made from 

single-population time series alone. 

The techniques of time series analysis and nonlinear RSM techniques have been applied 

to these data by Turchin (Turchin, 1993, 1995b) and Falck et al. (1995a, b). Turchin’s results 

suggested that the more northern populations (Norway, Russia) were chaotic, while those 

further south (below about 60o latitude) were not. Two northern and one more southern 

population are shown in figure 7.3 along with their estimated Lyupanov exponents. These 

conclusions have been questioned by Falck et al. (1995a,b). We review the critique of Falck 

et al. since it raises some general problems about the RSM techniques and ecological 

sampling.  

A major criticism by Falck et al. was that the estimated Lyupanov exponents were not 

accompanied by estimates of uncertainty in the form of confidence intervals, and this 

problem has been acknowledged by Turchin (1995b). Falck et al., used the bootstrap to 

simulate new time series from the observed residuals. If the observed time series is, N1, N2, 

…, Nm, and the nonlinear function, f(Nt-1, Nt-2, .., Nt-k), then associated with each observation 

is a residual given by, 

 t t t t t kN f N N N    1 2, ,.., . 

The residuals are then sampled with replacement to generate a new time series. The 

Lyupanov exponent is estimated from the simulated time series and saved. This is repeated 
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many times and the replicate Lyupanov exponents can be used to create a confidence 

interval. As pointed out by Efron and Tibshirani (1993) this technique is only as good as the 

regression model. That is because t will include observational errors, environmental noise 

and lack of fit errors. If this last term is large it will inflate the size of the confidence interval. 

In a later paper Falck et al., (1995b) used a different procedure for generating bootstrap 

samples that directly sampled neighboring observations. The confidence intervals generated 

from neighboring observations were similar in size to the intervals generated from the 

residuals. Thus, the results of Falck et al. suggest that estimated Lyupanov exponents tend to 

be biased. Positive Lyupanov exponents tend to be too small and negative exponents tend to 

be too large. This must be taken into account both when estimating the Lyupanov exponent 

and when estimating its confidence interval.  

Falck et al. also note that the confidence interval around many of the positive Lyupanov 

exponents estimated for the vole data include zero. Therefore, they believe the evidence 

overall does not strongly support chaotic dynamics for voles. On the other hand, Turchin 

points to the consistent appearance of positive Lyupanov exponents in independent 

populations when he suggests there is strong evidence for chaotic dynamics. Turchin’s point 

is well taken although the argument ultimately hinges on the extent to which we can consider 

multiple natural populations of the same species to be replicates. In the strict sense, such sets 

of populations are not replicates since there is no way we can insure that each population 

experiences the same environment, predation pressures etc.. The implicit argument here is, 

of course, that the major environmental variables affecting dynamics are roughly divided 

along a north-south gradient. Thus, any populations above 60o latitude will experience a 

“common” environment and, therefore, can be treated as replicates of a common 

environmental regime. One notion of the North-South dichotomy had been that generalist 
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predators are more important south of about 60o and they have a generally stabilizing effect 

on vole dynamics. Turchin’s position is that ultimately the combined forces of intraspecific 

competition and predation from generalist and specialist species will make any vole 

population north of 60o grow chaotically.  

It appears that the differences between the approaches of Turchin and Falck et al. finally 

boil down to an argument over the power of replication. Turchin is arguing that the repeated 

observation of the same finding bolsters one’s confidence that there is a general set of forces 

at work, shaping the dynamics of a set of populations. Falck et al. (1995b) seem to argue 

against the benefits of replication when they say that it may be preferable to have a single 

time series of 200 data points rather than 10 consisting of 20 points. They seem not to 

appreciate that even infinite knowledge of a single population does not permit use to make 

any generalizations about population processes. In an attempt to solidify the general 

understanding of the vole system Turchin and Hanski (1997) have developed theory to 

incorporate the effects of predation and a seasonal environment. Their model assumes that 

there are both specialist predators (like weasels) and generalist predators (like foxes, badgers 

and feral cats). Moreover, the intrinsic rate of increase of the voles and the specialist 

predators varies as a sine wave to reflect seasonality. Under this model the North-South 

dichotomy arises because the generalist predators, that have a stabilizing effect on vole 

dynamics, are more common in the south. 

Turchin and Hanski estimate some of their model parameters from the natural 

populations and then use the models to predict dynamics. Although the model does a very 

good job predicting the north-south dichotomy in vole dynamics, it will probably take more 

empirical information on the various predator populations to confirm the basic correctness 

of the model. 
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Red Grouse 

Red grouse (Lagopus lagopus scoticus) are popular game birds in England and Scotland. The 

numbers of birds caught by hunters on different estates have been catalogued for many years 

and some of these data have made their way to biologists who were taken by the apparent 

cycles that appear in some of these records (Middleton, 1934; MacKenzie, 1952). Time series 

analysis of these records demonstrate true cycles in some populations (Williams, 1985). The 

flavor of these data can be obtained from one data set from Northern Scotland (fig. 7.4). 
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FIGURE 7.4. The number of Red Grouse killed by hunters on an estate in Aberdeenshire, 
Northern Scotland (data from Middleton, 1934). 

Moss et al. (1996) review the evidence against several hypotheses that have been 

proposed for these cycles including predator-prey interactions and high parasite burdens. To 

investigate the importance of the number of breeding males, Moss et al (1996) 
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experimentally removed males from one population of Red Grouse and compared the 

population size variation to an unmanipulated control population. This experiment clearly 

showed that male removal prevents the population cycling. The areas in which males were 

removed also exhibited a reduction in female numbers. Male Red Grouse hold territories and 

females must pair with a territorial male to mate. Although territorial males are sometimes 

found without female mates the reverse is not found. Apparently, the removal of males from 

a population also results in females leaving the population. The precise mechanism that 

affects the breeding success is not known but probably involves the number and age of the 

breeding population. 

WHY IS CHAOS RARE IN NATURAL POPULATIONS? 

The data gathered by ecologists so far suggest that only a small number of natural and 

laboratory populations might have chaotic dynamics. Even in the laboratory Tribolium 

populations will only be chaotic with constant manipulation of the population by humans. 

Yet, many models of population dynamics admit the possibility of chaotic behavior. Why, 

then, do we not see chaos more often? This is a question to which the answer is not clear at 

this time. It is possible, as some workers have suggested, that life-history evolution through 

natural selection on individuals in populations typically results in the evolution of 

demographic parameters to values that do not produce chaotic dynamics. Yet, the 

preliminary evidence from Drosophila suggests that if such evolution takes place, it is not 

rapid. However, the information we have derived from fruit flies also suggests that 

population dynamics may vary widely among populations adapted to different density 

conditions. In nature, this could translate into wide variation of dynamics over space. 

Indeed, the evidence from voles and lemmings also supports this conclusion. It is also 

known that isolated chaotic populations do have greater chances of going extinct than 
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relatively more stable populations of similar mean size. Consequently, environments that 

produce chaotic dynamics for a given species may seldom have viable populations. Thus, as 

a matter of sampling we simply do not see many chaotic populations. It should be noted that 

these two explanations implicitly invoke different causes for chaotic dynamics. In the former 

case, the cause for chaos is assumed to be the genetically determined values of demographic 

parameters in the population, whereas in the latter case, chaos is assumed to be due to 

environmentally determined values of demographic parameters. This distinction is not 

always made explicitly, but needs to be kept in mind whenever one is discussing the 

evolution of population dynamic behaviors. 

Another possibility is that there are other biological details of populations that reduce 

the likelihood of chaotic dynamics. A number of authors (McCallum, 1992; Rohani and 

Miramontes, 1995; Ruxton and Rohani, 1998) have suggested that population floors may be 

responsible for inhibiting chaos in natural populations. A population floor is simply a 

portion of the population that is invulnerable to density-regulation. We may represent this 

as, 

 N f N Nt t t k  1 ,...,  , 

where  is the invulnerable fraction of the population. One could imagine,  as representing 

a spatial refuge from competition or predation, or a relatively constant source of immigrants 

from large external populations. Rohani and Miramontes (1995) and Ruxton and Rohani 

(1998) add population floors to a variety of single population growth models and host-

parasitoid models. While adding these floors had the general effect of making chaos more 

difficult to reach there were some interesting qualifications. For instance chaos reached by 

quasi-periodicity, in these particular models, was more resistant to the effects of population 

floors than chaos reached by period doubling. 
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At this point in time, all we can say is that our current knowledge of theory and the 

biology of populations does not rule out the possibility of populations showing chaotic 

dynamics. Indeed several candidate natural populations have been discussed in this chapter. 

Yet, only a small minority of populations studied actually seems to exhibit chaotic 

behavior. It may be that finding populations with the right life-histories, environments, and 

historical accidents to reveal chaos is a rare event.  
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CHAPTER  EIGHT 

Conclusions 

A HEURISTIC FRAMEWORK FOR VIEWING POPULATION DYNAMICS AND 

STABILITY 

In both theoretical and empirical studies in population ecology, two broad categories of 

models have been used extensively. At one extreme, there are very simple models, such as 

the linear and exponential logistic models (see Chapter 2), with a single difference or 

differential equation representing the recursion of adult numbers from one generation to the 

next. In these models, all details of the life-history and ecology of the species are subsumed 

into a single expression embodying the dependence of adult numbers in one generation 

upon the adult numbers in the preceding generation through a humped functional form. 

While some of these models may do a reasonable job of capturing gross features of the 

dynamics of certain laboratory populations, they ignore many aspects of the biology of the 

organism that are known to play a major role in determining vital rates and, through them, 

the dynamics of the population. These models typically ignore both stage-structure (i.e. the 

division of the life cycle into discrete, ecologically distinct stages like larvae, pupae and 

adults), and age-structure within a given life-stage. Thus, they cannot make any distinction 

between life-stages that vary in terms of how important their numbers are in terms of 

triggering density-dependent regulatory mechanisms. Similarly, no distinction can be made 

between different regulatory mechanisms that exercise their effect by affecting the densities 

of different life stages. These distinctions between which life-stages are the triggers and 

which the targets of density-regulation, as well as considerations of the magnitude of 

ontogenetic delays between the trigger and target life-stages, can have profound effects on 

the stability or instability of the ensuing dynamics (Gurney and Nisbet, 1985; McNair, 1995). 
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By trigger life-stage, we mean the life-stage whose density is the stimulus for a density-

dependent phenomenon that plays a role in population regulation, and by target life-stage we 

mean the life-stage whose numbers are primarily affected by the operation of a particular 

density-dependent regulatory phenomenon. The ontogenetic delay between trigger and target 

life-stages refers to the time lag between the triggering of a density-dependent regulatory 

mechanism and its ultimate impact on the number of individuals in the target life-stage: this 

time lag depends upon when in the course of an organism’s life-cycle the target and trigger 

life-stages occur. For example, in Drosophila, density-dependent fecundity plays a regulatory 

role; here fecundity responds primarily to adult density, and the adult stage, therefore, is the 

trigger life-stage. The impact of this density-dependent regulation, however, does not 

primarily fall upon the adult stage. The target life-stage for density-dependent fecundity is 

the egg stage, whose numbers are primarily affected by the operation of this density-

dependent regulatory phenomenon. It should be noted that the same regulatory mechanism 

can have multiple trigger life-stages, but will typically have only one target life-stage. 

On the other extreme of the spectrum of population dynamics models, there are detailed 

species-specific models that explicitly incorporate many of the relevant details of life-history 

and ecology of the species being studies, as was the case with the LPA model for Tribolium 

(Dennis et al., 1995) and the Drosophila model of Mueller (1988) discussed earlier. As we have 

seen, these models, provide a good understanding of the factors affecting the population 

dynamics of a particular species and their predictions have successfully withstood careful and 

rigorous empirical testing. At the same time, though, these very detailed and species specific 

models do not have much heuristic value. The simple models, on the other hand, have been 

of heuristic value in terms of understanding how simple considerations of density-

dependence can give rise to complex dynamics, especially in the presence of time-delays 
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between the triggering of density-dependent regulation and its actual impact on population 

density (e.g. May and Oster, 1976). Beyond this, however, the simple models also have 

limited heuristic value, especially with regard to their ability to provide experimenters with a 

conceptual framework within which they can decide which aspects of the ecology and life-

history of their study organism are likely to play a major role in determining population 

dynamics, and whether that role is likely to be a stabilizing or destabilizing one. In this 

section, we will build upon some ideas outlined by McNair (1995) and try to build a heuristic 

framework for viewing the impact of the life-history and ecology of a species on the 

dynamics of its populations. We hope that this framework will be especially useful for 

experimentalists who need to be able to separate those aspects of the biology that are 

relevant to population dynamics from those that have, at best, a small role to play, and who 

are, in many cases, not enamored of elaborate mathematical formulations that often seem to 

have little bearing on the biology of any real organism. 

Using a stage-structured model (eggs, larvae, pupae, adults) with larval food supply being 

the critical factor limiting population growth, Gurney and Nisbet (1985) showed that 

density-regulation triggered by the number of larvae gives rise to cyclic fluctuations in adult 

numbers whose periodicity is strongly affected by whether larval density feed backs upon 

itself, or has a regulatory influence on other life-stages. The importance of the relative 

positioning in the life-cycle of the life-stages acting as the trigger and target of the density-

dependent regulatory mechanisms was further elaborated upon by McNair (1995), using a 

stage-structured model, with overlapping generations and within stage age-structure. In this 

model, adult density was fixed as the trigger for density-dependent regulatory feedback. The 

target life-stages for the feedback were then systematically varied across the ontogeny, and 

the dynamic behavior of the model studied. The results showed that the local stability of the 
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equilibrium numbers of adults, and early and late stage juveniles, depended critically on the 

interplay between the sensitivity of fecundity and stage-specific mortality to adult density, 

and on the life-stage affected by adult-density dependent mortality. In this model, a unique 

stable equilibrium for adult and juvenile numbers could always be obtained by the choice of 

appropriate values for fecundity and mortality, regardless of the target life-stage of the 

mortality, age-dependence or independence of fecundity, and the distribution of maturation 

times in the juvenile stage. Once such an equilibrium had been obtained, McNair examined 

the effect of varying the degree of sensitivity of fecundity or mortality to adult density. He 

found that a local equilibrium could always be destabilized by setting a high enough level of 

the sensitivity of fecundity to adult density, giving rise to sustained oscillations in adult and 

juvenile numbers, regardless of the target life-stage of density-dependent mortality. 

However, when the sensitivity of fecundity to adult density was held at a level that ensured 

stability of the equilibrium, and the sensitivity of mortality to adult density was increased, the 

effect on the dynamics depended on the target life-stage. Extremely sensitive adult density-

dependent mortality of early juveniles destabilized the equilibrium, giving rise to sustained 

cycles, whereas adult density-dependent mortality of late juveniles or adults was not 

destabilizing even if sensitivity to adult density was high.  

McNair (1995) explained these results on the basis of the ontogenetic time delay between 

the triggering of density-regulation and its subsequent feed back upon adult density, when 

the target of the regulation was the egg or early juvenile stage. Thus, adult density-dependent 

fecundity or early juvenile mortality affect the numbers of eggs, and young juveniles, 

respectively. For these effects to have an impact upon adult numbers, which act as the 

trigger for density-dependent regulation, takes time (the maturation time of juveniles), 

thereby raising the possibility of population cycles if the density-dependence is strong. The 
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effects of the density-dependent regulatory mechanism, thus, must trickle up the ontogeny 

before thay can exert feedback on the trigger life-stage. Effects of adult density on either 

itself or on late juvenile density, on the other hand, trickle up to the triggering life-stage 

much faster, leading to relatively stable dynamics. An important point here is that neither 

ontogenetic delays inherent in the life-history (e.g. the delay caused by maturation time of 

juveniles), nor the mechanism of density-dependence are, in themselves, the causes of 

instability in population dynamics. Rather, it is the ontogenetic time lag between the life-

stages acting as the trigger and target of density-dependent regulation that determines the 

nature of the dynamics. For example, in a model similar to McNair’s in many ways, Rorres 

(1979) showed that strong density-dependence of fecundity is destabilizing if adults are the 

trigger life-stage, and stabilizing if juveniles are the trigger life-stage. Obviously, if juvenile 

density triggers regulation of adult fecundity, this effect will trickle up to the trigger (juvenile) 

stage much faster than if the trigger life-stage were the adults.  

In addition to the identification of the trigger and target life-stages of a species, and their 

relative position in the life-cycle, there are other very important aspects of the biology of 

species that have an impact on population stability. In addition to any time delays between 

the effect of a density-dependent regulatory mechanism on the target life-stage and the 

trickling up of that effect to the trigger life-stage, it is also necessary to consider possible 

time delays between the triggering of a regulatory mechanism and its effect on the target 

stage. For example, if generations are fully discrete, adult density cannot possibly act in a 

regulatory manner by feeding back upon juvenile mortality (fig. 8.1), whereas this is easily 

possible when generations are overlapping, and may even be destabilizing if the mortality 

affects very early stage juveniles (fig. 8.2).  
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Figure 8-1 Schematic representation of how stability of a population can be affected by the 
interplay between the ontogeny and various possible density-dependent feedback loops, 
depicted by thin arrows, in a species in which cohorts are spatially segregated (indicated by a 
thick black vertical line separating the juvenile and adult stages), either through a fully discrete 
generation life-cycle, or through some other means. The thick black arrows represent ontogenetic 
transitions. The effect of juvenile density on adult mortality or fecundity in this case cannot be 
direct because of the segregation of life-stages and must, therefore be mediated through 
physiological effects on adults of the density they experienced during the juvenile stage. Such an 
indirect effect of juvenile density on adult mortality or fecundity involves a long ontogenetic delay. 

Similarly, if generations are discrete, and the trigger life-stage are the juveniles, the effect of 

juvenile density on fecundity would have to be indirect, through the size of adults being 

reduced if they experienced relatively high densities as juveniles (fig. 8.1). Thus, although the 

trigger and target life-stages here are the same, juvenile density cannot feedback on itself 

rapidly due to the discrete generations. The effect of juvenile density in any generation will 

be felt only on the number of juveniles in the subsequent generation, a good example of 

what we mean by an “ontogenetic time delay”. This effect would potentially be destabilizing 

because the ontogenetic time delay is relatively long. On the other hand, if generations are 

overlapping, juvenile density can generate a stabilizing regulatory feed back loop through 
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direct inhibitory effects on adult fecundity which then rapidly feed back onto the juvenile 

stage (fig. 8.2). 

Although the distinction between organisms with discrete versus overlapping generations 

provides a contrast that clearly exemplifies the possibility of a time delay between the 

triggering of a density-dependent regulatory mechanism and its actual effect on the target 

stage, the underlying issue here is of the separation of cohorts in space and time. The 

importance of spatial separation of cohorts, although in a somewhat different context, has 

also been stressed by Rodriguez (1998), who showed for a system modeled by differential 

equations with time delays in density-dependence built in that such delays are destabilizing 

only when cohorts overlap in space. The point we wish to stress is that, in a typically fully 

discrete generation laboratory system, cohorts do not coexist in either space or time, and 

therefore the number of possible regulatory loops is reduced compared to a system in which 

generations overlap in both time and space (contrast the number of such loops in figs. 8.1 

and 8.2).  
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Figure 8-2 Schematic representation of how stability of a population can be affected by the 
interplay between the ontogeny and various possible density-dependent feedback loops, 
depicted by thin arrows, in a species in which generations overlap and cohorts are not spatially 
segregated. The thick arrows represent ontogenetic transitions. In this context, ‘feedback to next 
generation’ implies a density-dependent feedback mechanism whose target is at point of 
recruitment into the first juvenile stage (eggs or neonates). In such a system, in contrast to one 
with spatial segregation of life-stages, juvenile density effects on adult fecundity can be direct 
(e.g. high density of juveniles at any point in time can have an inhibitory effect on the fecundity of 
the adults in the population at that same time) and can, therefore, give rise to a stabilizing 
feedback loop. Note also that adult density-dependent juvenile mortality in such sytems can 
produce either destabilizing or stabilizing feedback loops, depending on whether it is the older 
(black feedback loop in A) or younger (grey feedback loop in A) juveniles that bear the brunt of 
the mortality. 

Systems with overlapping generations are often treated, at least for modeling purposes, 

as discrete generation systems by an appropriate choice of time units for modeling/census, 

as was done in the case of the LPA model of Tribolium dynamics and in experiments 

designed to test it (Dennis et al., 1995; Costantino et al., 1995, 1997; Benoît et al., 1998). Yet, 

in terms of what density-dependent regulatory loops are possible, the system may be far 

from approximating a truly discrete generation system largely because of lack of segregation 

of different life-stages in space and time. Thus, adult beetles were able to cannibalize pupae 
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even in the discretized Tribolium systems used by Dennis et al (1995) and Costantino et al 

(1995, 1997), whereas this would be impossible in a truly discrete generation system. Within 

the same kind of discretized system, however, when pupae were spatially segregated from the 

adults by providing them with a refuge, the stabilizing effect of pupal cannibalism by adults 

vanished and adult numbers grew exponentially (Benoît et al., 1998).  

Another point that we wish to stress is that there is a difference in the possible range of 

effects that fecundity and mortality, the two processes through which density-dependent 

regulation operates, can have upon the density of the target life-stage. Fecundity basically 

causes recruitment into the first (youngest) juvenile stage, and can therefore cause numbers 

to increase, whereas mortality affects recruitment either into later juvenile stages or into the 

adult stage and can only cause decreases in numbers. The one exception to this is neonate or 

egg mortality (e.g. egg cannibalism in Tribolium), which for all practical purposes implies a 

reduction in fecundity, broadly taken here to mean the level of recruitment into the first 

juvenile stage. The main implication of the difference between fecundity, in this broad sense, 

and mortality, excluding neonate/egg mortality, is that the role of density-dependence of 

fecundity and mortality in population regulation depends not just upon their interaction, but 

also upon the interplay of the baseline level of fecundity when density is very low, and the 

strength of the density-dependent control on fecundity. 

This point can be illuminated by analogy with a situation in which a person is trying to 

drive a car at a constant speed imposed by the environment in the form of a posted speed 

limit. The speedometer conveys information regarding the speed at any point in time, and 

the driver can, in principle, regulate speed by a combination of using the accelerator and the 

brake. However, the roles of the accelerator and brake are slightly different, even though 

both are components of the speed regulating process. The accelerator can be used to either 
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increase or decrease speed: in the absence of acceleration, friction will tend to reduce speed. 

The brake, on the other hand, can only decrease speed. The accelerator, thus, is analogous to 

fecundity, with mortality playing the role of friction, whereas the brake is analogous to 

mortality. Now imagine a situation where there is no speed-dependent control on the 

accelerator, which is fixed at a certain position. The driver, then, has to regulate speed based 

entirely on the brake. In this situation, it is easier to drive at a constant speed if the 

acceleration is fixed at a relatively low rather than a high level. The analogy here is with 

systems in which mortality is density-dependent, whereas fecundity is density-independent, 

but relatively high in one case and low in the other. Similarly, if the braking intensity is to be 

fixed at a speed-independent level, maintaining a constant speed will be easiest if base-line 

acceleration (at low speeds) is not too high, and if the accelerator is not too sensitive to 

speed. 

Overall, when trying to assess the impact of various aspects of life-history and ecology of 

a species on population dynamics, one can use this heuristic framework to evaluate the 

potential effects of different biological factors and processes on stability and dynamics by 

examining how they map onto the ontogeny, and whether or not they are likely to directly 

affect recruitment into the first juvenile stage. Some of the major questions that need to be 

addressed in any such attempt at integrating life-history and ecology into a cohesive picture 

of how their interaction will determine the dynamics of a population are: 

 Are generations discrete or overlapping? If generations overlap, are cohorts segregated in 

space? 

 What kinds of interactions exist among life-stages? Which life-stages are likely to be the 

triggers of density-dependent regulatory mechanisms? Often the trigger stage will be the 

stage that is the primary consumer of resources. 
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 Which life-stages are the likely targets of the density-dependent regulatory mechanisms? 

If the target is the first juvenile stage, does the regulatory mechanism act primarily 

through fecundity or mortality? 

 How do the trigger and target map onto the ontogeny, especially in the context of 

whether cohorts are spatially segregated or not? What are the time delays between 

triggering of a regulatory mechanism and its effect on the target, and between the effect 

on the target and its final effect on the triggering life-stage? 

 If fecundity or mortality are density-independent, what is their magnitude? 

 What is the census life-stage? If this stage is not the trigger life-stage, how does it map 

onto the ontogeny, relative to the trigger life-stage, and the first juvenile stage to which 

recruitment is governed through fecundity? 

Another point that must be taken into account when evaluating if a particular feedback 

loop is likely to have stabilizing or destabilizing effects on the dynamics of numbers of a 

particular life-stage, is whether the system has discrete or overlapping generations. The 

reason is that the stabilizing or destabilizing nature of a feedback loop is a relative notion. In 

the context of overlapping generations, a particular feedback loop involving an ontogenetic 

time delay between the triggering of a regulatory mechanism and its effect trickling back up 

to the trigger life-stage, can be destabilizing by inducing periodicity into fluctuations of the 

numbers of the census life-stage, especially if the delay is greater than the between-census 

time interval. The same feedback loop, in a discrete generation system, could have a 

stabilizing effect on the numbers of the same census life-stage because here a delay is anyway 

inherent in the system. Indeed, a discrete generation system is, in one sense, a system with 

overlapping generations that shows a strong periodicity in adult numbers, equal to the 
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development time, with minima in adult numbers being equal to zero (Gurney and Nisbet, 

1985). 

The important issues listed above should not be considered in isolation; real populations 

will often have multiple census, trigger, and target life-stages, as we shall see in the next 

section.  Nevertheless, we feel that the conceptual framework outlined in this section is of 

value because it allows us to evaluate systematically the various aspects of the life-history and 

ecology of a species in a manner that will be helpful in deciding which effects are likely to 

play a major role in determining the stability of the system. 

L. CUPRINA, TRIBOLIUM AND DROSOPHILA COMPARED 

In this section, we will take another look at what is known about population dynamics 

and stability in the two best studied model systems, Tribolium and Drosophila, and compare 

them in the light of the framework discussed above, highlighting similarities and differences 

in the way in which population growth is regulated in the two systems. We will also briefly 

discuss the third system we looked at earlier, L. cuprina, as an interesting contrast to both 

Tribolium and Drosophila. Concentrating on the latter two systems for the time being, it is clear 

that Tribolium cultures are relatively more stable with regard to adult numbers as compared to 

Drosophila cultures of about the same size subjected to a stabilizing food regime. For 

example, in the four control populations of Tribolium used by Costantino and Desharnais 

(1980), the mean number of adults was ~100, and the coefficient of variation of adult 

numbers over time was 0.21. By contrast, the mean number of adults in small Drosophila 

populations subjected to the stabilizing (HL) food regime was also ~ 100 but the coefficient 

of variation of adult numbers was 0.62 (A. Joshi, V. Sheeba and M. Rajamani, unpubl. ms). 

There are other differences between these two systems as well (fig. 8.3). It should be noted 

that figure 3 represents the ontogeny and life-history of typical laboratory populations of 
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Tribolium and Drosophila. By ‘typical’ we mean the standard overlapping generation 

populations of Tribolium, with food renewed every 2 weeks, used in the studies by R. F. 

Costantino, R. Desharnais and coworkers that we discussed in Chapter 5, and the HL type of 

discrete generation Drosophila cultures used by L. D. Mueller, A. Joshi and coworkers that 

were described in Chapter 6. Consequently, the various types of feedback loop depicted are 

for parameter values seen in those typical populations. Deviation from those parameter 

values can lead to dynamic consequences not depicted in figure 3.  
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Figure 8-3 Schematic depiction of the ontogeny/life-history of typical laboratory populations of 
Tribolium (as used in the studies by R. F. Costantino, R. Desharnais and coworkers) and 
Drosophila (maintained on discrete generations on an HL food regime), showing the major 
density-dependent mechanisms affecting the dynamics of adult numbers. Thick black arrows 
represent ontogenetic transitions. Thin black solid and dashed lines indicate very strongly and 
moderately strongly stabilizing density-dependent feedback loops, respectively. Thin gray dashed 
lines indicate potentially destabilizing but weak feedback loops. Life-stages that act as triggers of 
density-dependent regulatory mechanisms are underlined. 
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For example, experimentally increasing the rate of adult mortality in Tribolium cultures can 

have a strongly destabilizing effect. Similarly, in an LH type of Drosophila culture, the 

weakening of the adult density dependent effects on female fecundity can completely 

eliminate the stabilizing effect of the feedback loop due to density dependent fecundity. 

Tribolium cultures have overlapping generations and, typically, life-stages or cohorts are 

not spatially segregated. In many of the Drosophila studies, on the other hand, populations 

have been maintained on fully discrete generations. Base-line fecundity in Drosophila is 

relatively high, and is subject to adult density-dependent regulation. Compared to Drosophila, 

both base-line fecundity, and the strength of its density-dependence, are substantially lower 

in Tribolium. Moreover, the principal density-dependent regulatory mechanisms in Tribolium 

are cannibalism of eggs and pupae by adults, and to a lesser degree, cannibalism of eggs by 

larvae. Thus, the major trigger life-stage for regulation in Tribolium is the adults, and the main 

targets of adult density-dependent mortality are eggs and pupae. At the same time, the larval 

stage is also a subsidiary trigger for cannibalism of eggs by larvae. In Drosophila, too, there are 

multiple life-stages triggering different major regulatory mechanisms. The major consumers 

of food are the larvae, and they act as the trigger life-stage for density-dependent larval 

mortality. However, regulation also acts through female fecundity, and here the primary 

trigger life-stage is the adults, although larval density also affects female fecundity because 

the size of an adult is reduced if it experienced relatively high densities as a larva (fig. 8.3). 

If we focus primarily on the dynamics of adult numbers, it is clear that the strongest 

stabilizing regulatory mechanism in Tribolium is adult density-dependent cannibalism of 

pupae. Here, the delay between the triggering of the regulation and the impact of the pupal 

mortality back upon adult numbers is minimal. Given the fairly high rate of pupal mortality 

due to adult density-dependent cannibalism, this is a very strong regulatory mechanism. 
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Larvae in Tribolium do cannibalize eggs, but the effect of this feedback on the dynamics of 

adult numbers, though destabilizing, is weak because it is completely overshadowed by the 

feedback via adult cannibalism of pupae. Similarly, there is also a potentially destabilizing 

feedback loop through adult density-dependent recruitment into the youngest juvenile stage. 

Although the adult density-dependence of fecundity in Tribolium is very weak, compared to 

Drosophila, the density-dependent cannibalism of eggs by adults plays the same role in the 

life-history that density-dependent fecundity does. And, in fact, if we examine the strength of 

adult density-dependence of recruitment into the larval stage in Tribolium, ignoring whether it 

is through fecundity alone or a combination of fecundity and cannibalism, the recruitment 

falls off with increasing adult density to a degree similar to that seen in Drosophila (figure 4). 

In an overlapping generation culture of Tribolium, such adult density-dependence of larval 

recruitment is a potentially destabilizing feedback loop, but its overall impact on the 

dynamics of adult numbers is low because of the very low baseline level of fecundity in 

Tribolium. Moreover, as in the case of cannibalism of eggs by larvae, this effect too is 

overshadowed by the very strong feedback loop of adult density-dependent cannibalism of 

pupae. 
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Figure 8.4 Comparison of the sensitivity of recruitment into the first juvenile stage to adult density 
in laboratory populations of Drosophila and Tribolium. The figure shows best fit curves obtained 
by fitting the hyperbolic model of fecundity as a function of density (F(Nt) = a/(1 + bNt)) to data. 
Data on fecundity of Drosophila females at different densities, after being maintained on either 
yeasted or unyeasted food, were from Mueller et al (1999) and Mueller and Huynh (1994), 
respectively, while data for Tribolium were from Rich (1956) for fecundity, and from Costantino 
and Desharnais (1980) for larval recruitment. 

In the case of a discrete generation culture of Drosophila, on the other hand, the situation 

is different. Here, the only main feedback loop involving mortality is due to larval density-

dependent larval mortality, and this is a stabilizing regulatory mechanism. However, 

considering the dynamics of adult numbers, this is not a very strongly stabilizing loop 

because there is another loop that lies between the numbers of adults in one generation and 

the operation of larval density-dependent larval mortality , affecting adult numbers in the 

next generation. This intervening regulatory loop is through adult density-dependent female 
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fecundity and, in a discrete generation population which already has an inbuilt time delay, 

this feedback loop is stabilizing. Base-line fecundity in Drosophila, however, is rather high (fig. 

8.4), and this feedback loop is therefore not as strongly stabilizing as the cannibalism of 

pupae in Tribolium. The effect of regulation through density-dependent fecundity in 

Drosophila is also strengthened to a small degree by larval density-dependent control of 

female fecundity. High larval density results in small adults, whose baseline fecundity is, 

consequently, reduced. However, this effect is partly offset by the fact that high larval 

density usually reduces subsequent adult numbers, due to high larval mortality, and this will 

tend to reduce the inhibiting effect of high larval density on fecundity.  

The laboratory populations of the blowfly, L. cuprina, discussed in chapter 4, provide an 

interesting contrast to both Tribolium and Drosophila systems. Although the populations of L. 

cuprina used in Nicholson’s (1954 a, b; 1957) experiments were also maintained with 

overlapping generations, there are several differences between them and the Tribolium 

populations we discussed in chapter 5 (Dennis et al., 1995; Costantino et al., 1995, 1997; 

Benoît et al., 1998). Daily adult mortality, and therefore, the rate of turnover of cohorts 

constituting the adult population, especially at high adult density, was far greater in L. cuprina 

than in Tribolium. Baseline female fecundity in L. cuprina was almost twice as high as in 

Tribolium, and the sensitivity to adult density of recruitment into the youngest juvenile stage 

was relatively lower in L. cuprina, especially in the LH treatments where adult protein supply 

was unlimited. Most importantly, both major density-dependent regulatory mechanisms in L. 

cuprina, adult density-dependent female fecundity and larval density-dependent larval 

mortality, involve a time delay more or less equal to the development time before the 

triggering of the density-dependent feedback and its effect finally being felt at the adult stage. 

Recall here, that in the LH food regime of Nicholson’s, adults lay large numbers of eggs 
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regardless of adult density, giving rise to very high densities of newly hatched larvae. 

Consequently, although the regulatory mechanism of larval mortality here is, strictly 

speaking, triggered by larval density, the larval density itself is directly proportional to adult 

density a few days before. Thus, in some sense, the trigger life-stage here is also the adult 

stage. In Tribolium, the delay between the triggering of adult density-dependent cannibalism 

of pupae and its impact on adult densities is almost negligible. It is, therefore, not surprising 

that the dynamics of adult numbers in Tribolium are relatively stable, whereas in L. cuprina the 

dynamics are highly destabilized, regardless of food regime. 

If we compare the effects of LH and HL food regimes on L. cuprina and Drosophila, it is 

clear that the HL food regime does not have the same stabilizing effect on L. cuprina as it 

does on Drosophila. The reason for this, we believe, is the difference in maintenance regime in 

the two systems. In the discrete generation Drosophila populations that were subjected to HL 

and LH food regimes, only eggs laid during a 24 hour period were used to initiate the next 

generation. The L. cuprina populations, on the other hand, were maintained with overlapping 

generations, and egg laying by adults was continuous, as was recruitment into the adult life-

stage. When generations are fully discrete, as in the Drosophila populations, the HL food 

regime is stabilizing because the regulatory effect of adult density-dependent fecundity 

eventually trickles up the ontogeny, through the egg, larval and pupal life-stages, back to the 

adult stage that triggered it. The critical point is that the ontogenetic delay here is not 

destabilizing because, in such a system, any adult density-dependent feedback effect will have 

to undergo this process of trickling back up through the entire ontogeny, because 

recruitment into the adult stage is episodic and because the adult stage cannot feed back 

onto preceding life-stages against the flow of the ontogeny, so to speak. In a system with 

overlapping generations, where recruitment to the adult stage is continuous, and where adult 



Stability in Model Populations  Conclusions 

L. D. Mueller & A. Joshi  8-19 

density can feedback upon pre-adult stages against the flow of the ontogeny, a time delay in 

density-dependent regulatory mechanisms will be destabilizing. As we noted earlier, stability 

is, at least in this context, a relative notion. Indeed, it is quite likely that in an overlapping 

generation culture of Drosophila, strong adult density-dependent fecundity would not in itself 

be a strong stabilizing factor.  Overall, we feel that the contrasts between the three model 

systems discussed here support the view that considerations of whether generations are 

discrete or overlapping, and what kinds of time delays exist between the triggering and effect 

of density-dependent feedback mechanisms, can be of great importance in determining 

whether a particular density-dependent mechanism will have a stabilizing or destabilizing 

effect on population dynamics. Some of the comparisons also exemplify the point that the 

same density-dependent regulatory mechanism can be either destabilizing or stabilizing, 

depending on the various life-history and ecological attributes of the system. 

MODEL SYSTEMS IN ECOLOGY: WHERE NEXT ? 

Our intention in writing this book has been to review the work done on single-species 

population dynamics using model laboratory systems, and to highlight, through this review, 

the tremendous potential of such systems for testing and refining theory in population 

ecology. Although the last two decades have seen tremendous growth in population ecology, 

much of this has been due to increased theoretical studies, and studies on wild populations, 

and advances in data analysis techniques. Laboratory studies in population ecology have not 

registered the same kind of growth, and we hope that this book will help redress this 

imbalance by inspiring more people to take up studies of model laboratory systems. In this 

last section, we highlight some areas of population ecology in which we think that studies on 

laboratory systems will prove especially fruitful in the future.  
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Although it is clear that much work has been done, especially on laboratory populations 

of Drosophila and Tribolium, we feel that there are still many unanswered questions in 

population ecology, the answers to which are perhaps best sought through empirical work 

on model systems in the laboratory. As we have discussed in chapter 2, the theory varies in 

predictions about the impact of age structure on the dynamics of populations in stabilizing 

and destabilizing environments. Age classes in mammals and birds are relatively easily 

distinguished, but these systems are not otherwise amenable to controlled experimentation. 

In chapter 6, we discussed one preliminary study of the effect of age structure on the 

dynamics of Drosophila populations kept under a destabilizing maintenance regime. With 

model systems, it should prove possible to critically examine many of the conflicting 

predictions from the theory.  

Knowledge of age-class dynamics are important for ecological and evolutionary reasons. 

Members of different age-classes may make different demands for natural resources or may 

show different propensities to disperse. If the absolute numbers of individuals in different 

age-classes varies or if their relative proportions vary, this can impact important ecological 

features of a population. Predictions of the effects of natural selection in populations with 

age-structure depends on the relative distribution of individuals into different age-classes 

(Charlesworth, 1994). The effects of natural selection on age-structured populations is 

important for understanding the evolutionary of iteroparity or the near universal 

phenomenon of aging (Rose, 1991). It will be important in the future to understand the 

environmental or other factors that might cause age-classes to achieve a stable age-

distribution or to fluctuate in a regular fashion. Such information could greatly expand the 

sophistication and relevance of evolutionary models with age-structured populations. 



Stability in Model Populations  Conclusions 

L. D. Mueller & A. Joshi  8-21 

Another aspect of single population dynamics that we feel will benefit from studies on 

model laboratory systems is our understanding of the biological causes of demographic 

stochasticity. Stochasticity can be incorporated into models of population dynamics in many 

ways. One may add a stochastic component to individual parameters of the model, or one 

may add a stochastic component to the predicted population size in the subsequent 

generation. Similarly, the stochastic component may be assumed to be additive on either the 

numerical or logarithmic scales. The impact on dynamics of incorporating stochasticity into a 

model in different ways has not been systematically studied. From a biological point of view, 

too, demographic stochasticity can arise from many causes, such as random variation in 

fecundity and in mortality at different life-stages, or random variation in sex-ratio. In chapter 

6, we discussed a study with Drosophila, suggesting that random sex-ratio variation may not 

be a major contributor to demographic stochasticity. It may be worthwhile to theoretically 

examine whether different biological causes of stochasticity translate into differences in how 

the stochastic component should be incorporated into a model of dynamics, and whether 

such differences ultimately yield varying predicted population size distributions. Empirical 

verification of such theory will definitely be much easier with laboratory rather than natural 

systems.  

The ability to manipulate migration rates and the nature of population dynamics in 

model systems like Drosophila and Tribolium also makes them useful for empirical verification 

of various predictions from single-species metapopulation theory. The effects of the 

interplay between migration and local dynamics on overall metapopulation dynamics can be 

fruitfully studied using model systems, as we have seen in chapter 6. In addition, there is 

considerable theory about the effects of constant migration rates on dynamics, the evolution 

of migration rates, and the effect on local and global dynamics of migration among sub-
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populations that show a variety of dynamic behaviors. These are all issues that will be 

difficult to study using natural populations, but are amenable to laboratory studies. Dynamics 

of Tribolium and Drosophila cultures can be easily manipulated, as can migration rates. In 

Tribolium, increased emigration has been successfully selected for (Goodnight, 1990 a,b), 

indicating that it may be possible to study the density-dependent evolution of migration rates 

experimentally. 

Systems of interacting species provide examples of some of the most complex and 

interesting spatial and temporal patterns in dynamic behavior. Although such systems are 

beyond the purview of this book, we think that the use of laboratory systems would enhance 

our understanding of such complex systems. Some of the earliest empirical work on two-

species dynamics was done on laboratory cultures of protozoans (Gause, 1934), and much 

detailed empirical work on inter-specific competition used laboratory populations of 

Drosophila species (Moore, 1952 a,b; Miller, 1964 a,b; Ayala, 1966, 1971; Arthur, 1980, 1986). 

More recently, laboratory studies have demonstrated (a) the stabilization of competitive 

interactions by predators (Worthen, 1989), (b) the presence of higher-order interactions and 

indirect effects in multi-species assemblages of competitors (Worthen and Moore, 1991), (c) 

a geographic mosaic in the outcomes of interspecific competition (Joshi and Thompson, 

1995), (d) the coevolution of competitors (Goodnight, 1991; Joshi and Thompson, 1996). 

Although, this is a partial list of important experimental work in multi-species population 

ecology, it suffices to make the point that laboratory systems can continue to make an 

important contribution to our understanding of the dynamics of multi-species systems. 

Some of the most interesting questions in community ecology arise in the context of 

multi-species metapopulations. Many of these questions, such as the effect of migration 

corridors on species abundance and diversity in communities, are also important to 
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conservation biology, and have been studied using multi-trophic laboratory communities of 

bacteria and protozoa (Burkey, 1997), and replicate field micro-ecosystems of moss patches 

with their microarthropod fauna (Gonzalez et al., 1998). Interestingly, fragmented microbial 

ecosystems with corridors went extinct significantly faster than those without corridors 

(Burkey, 1997), whereas in the moss patches, corridors arrested the decline in abundance and 

diversity of the microarthropod fauna caused by fragmentation (Gonzalez et al., 1998). Such 

differences in the results from different model systems highlight the need for studies on a 

range of model systems, which has not been the case thus far. Model micro-ecosystems have 

also been used to examine the effects of productivity and patch size on food web 

complexity: larger patches of habitat were found to support a food webs with more species 

and longer food chains than smaller patches of otherwise identical habitat (Spencer and 

Warren, 1996). Once again, we are citing just a few studies of this type, to make the point 

that model systems can be useful in testing predictions from theory in community ecology as 

well as population ecology. 

One advantage of model systems, as opposed to the majority of field systems, is often in 

the detailed knowledge of their biology that is already available. Thus, not every population 

of a species that happens to have been maintained in controlled conditions in a laboratory is 

really a model system. For well developed model systems, a wealth of information on their 

laboratory ecology, life-history and genetics is available, and it is this knowledge that allows 

an experimenter to go beyond observing certain dynamic behaviors and analyzing the 

observed patterns in time and space. Thus, as we have seen in the case of Drosophila and 

Tribolium, we now actually understand a great deal about how particular ecological or life-

historical phenomena give rise to certain kinds of dynamic behavior. One of the drawbacks 

with most natural systems is that, even if our knowledge of their ecology is reasonably good, 
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we typically know next to nothing about the genetic architecture of fitness components in 

those environments. Yet, as population ecology and population genetics move closer to one 

another, many of the interesting questions in evolution and ecology lie on their interface. For 

addressing these questions, model systems like Drosophila are extremely useful because a lot is 

already known about their laboratory ecology and evolutionary genetics under a variety of 

laboratory environments. Questions about the evolution of population dynamics and 

stability, involving an evaluation of group selection versus individual selection based 

hypotheses, are amenable to empirical study with model systems. So are issues like the 

impact of inbreeding levels on population extinction rates, the genetic effective size of 

metapopulations, and the determination of minimum viable metapopulations from both 

demographic and genetic points of view. 

As we said earlier, we are disturbed by the relative rarity of experimental studies on 

model systems in ecology, as compared to studies on wild populations. Ultimately, our 

understanding of population or community dynamics will be best served by a three-pronged 

approach that involves feedback from theory, laboratory experiments and field studies. For 

this approach to be balanced, not only do we need more studies on model systems, we also 

need to develop a greater diversity of model systems, that are well characterized both 

ecologically and genetically. At this time, Drosophila and Tribolium remain the two best model 

systems for studies in population ecology. Genetically, Drosophila is better characterized, but 

Tribolium genetics is also making rapid advances (e.g. Alvarez-Fuster et al., 1991; Beeman et al., 

1996; Beeman and Brown, 1999). There are other laboratory systems that have already been 

used extensively in studies on evolutionary genetics and life-history evolution, such as 

bacteria (Vasi et al., 1994; Lenski and Travisano, 1994; Travisano et al., 1995 a,b; Elena et al., 

1996; Elena and Lenski, 1997), and the bruchids Callosobruchus (Møller et al., 1989; Tatar et al., 
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1993; Tatar and Carey, 1994, 1995) and Acanthoscelides (Tucic et al., 1990, 1996, 1997). 

Perhaps some of these systems could also be used fruitfully for investigations in population 

dynamics in the future. 
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